80 research outputs found

    Long-term follow-up of patients treated with radiotherapy alone for early-stage histologically aggressive non-Hodgkin's lymphoma

    Get PDF
    Historically localised aggressive non-Hodgkin's lymphoma (NHL) has been treated with involved field radiotherapy (RT), chemotherapy, or a combination of both modalities. The current weight of evidence supports a preference for combined modality treatment (CMT). Increased patient age at diagnosis is well recognised as a poor prognostic indicator in NHL, but despite this some perceive CMT as too toxic for use in the elderly. As a result, some older patients continue to be offered RT alone. Here, we present long-term follow-up of 377 adults of all ages treated with RT alone for early-stage diffuse large-cell lymphoma on British National Lymphoma Investigation trials between 1974 and 1997. 10-year cause-specific survival in patients older than 60 years was poor and significantly inferior to that in younger patients (47 and 75% respectively; P<0.001). There is growing evidence that short-course chemotherapy, with or without RT, is superior to RT alone in early-stage aggressive NHL, in elderly as well as in younger patients. Increased age alone should not exclude patients from systemic treatment for early-stage aggressive NHL

    Gene Expression Profiling of Preovulatory Follicle in the Buffalo Cow: Effects of Increased IGF-I Concentration on Periovulatory Events

    Get PDF
    The preovulatory follicle in response to gonadotropin surge undergoes dramatic biochemical, and morphological changes orchestrated by expression changes in hundreds of genes. Employing well characterized bovine preovulatory follicle model, granulosa cells (GCs) and follicle wall were collected from the preovulatory follicle before, 1, 10 and 22 h post peak LH surge. Microarray analysis performed on GCs revealed that 450 and 111 genes were differentially expressed at 1 and 22 h post peak LH surge, respectively. For validation, qPCR and immunocytochemistry analyses were carried out for some of the differentially expressed genes. Expression analysis of many of these genes showed distinct expression patterns in GCs and the follicle wall. To study molecular functions and genetic networks, microarray data was analyzed using Ingenuity Pathway Analysis which revealed majority of the differentially expressed genes to cluster within processes like steroidogenesis, cell survival and cell differentiation. In the ovarian follicle, IGF-I is established to be an important regulator of the above mentioned molecular functions. Thus, further experiments were conducted to verify the effects of increased intrafollicular IGF-I levels on the expression of genes associated with the above mentioned processes. For this purpose, buffalo cows were administered with exogenous bGH to transiently increase circulating and intrafollicular concentrations of IGF-I. The results indicated that increased intrafollicular concentrations of IGF-I caused changes in expression of genes associated with steroidogenesis (StAR, SRF) and apoptosis (BCL-2, FKHR, PAWR). These results taken together suggest that onset of gonadotropin surge triggers activation of various biological pathways and that the effects of growth factors and peptides on gonadotropin actions could be examined during preovulatory follicle development

    Disambiguating ventral striatum fMRI-related bold signal during reward prediction in schizophrenia

    Get PDF
    Reward detection, surprise detection and prediction-error signaling have all been proposed as roles for the ventral striatum (vStr). Previous neuroimaging studies of striatal function in schizophrenia have found attenuated neural responses to reward-related prediction errors; however, as prediction errors represent a discrepancy in mesolimbic neural activity between expected and actual events, it is critical to examine responses to both expected and unexpected rewards (URs) in conjunction with expected and UR omissions in order to clarify the nature of ventral striatal dysfunction in schizophrenia. In the present study, healthy adults and people with schizophrenia were tested with a reward-related prediction-error task during functional magnetic resonance imaging to determine whether schizophrenia is associated with altered neural responses in the vStr to rewards, surprise prediction errors or all three factors. In healthy adults, we found neural responses in the vStr were correlated more specifically with prediction errors than to surprising events or reward stimuli alone. People with schizophrenia did not display the normal differential activation between expected and URs, which was partially due to exaggerated ventral striatal responses to expected rewards (right vStr) but also included blunted responses to unexpected outcomes (left vStr). This finding shows that neural responses, which typically are elicited by surprise, can also occur to well-predicted events in schizophrenia and identifies aberrant activity in the vStr as a key node of dysfunction in the neural circuitry used to differentiate expected and unexpected feedback in schizophrenia

    The role of complement in ocular pathology

    Get PDF
    Functionally active complement system and complement regulatory proteins are present in the normal human and rodent eye. Complement activation and its regulation by ocular complement regulatory proteins contribute to the pathology of various ocular diseases including keratitis, uveitis and age-related macular degeneration. Furthermore, a strong relationship between age-related macular degeneration and polymorphism in the genes of certain complement components/complement regulatory proteins is now well established. Recombinant forms of the naturally occurring complement regulatory proteins have been exploited in the animal models for treatment of these ocular diseases. It is hoped that in the future recombinant complement regulatory proteins will be used as novel therapeutic agents in the clinic for the treatment of keratitis, uveitis, and age-related macular degeneration

    Bacterial Communities of Diverse Drosophila Species: Ecological Context of a Host–Microbe Model System

    Get PDF
    Drosophila melanogaster is emerging as an important model of non-pathogenic host–microbe interactions. The genetic and experimental tractability of Drosophila has led to significant gains in our understanding of animal–microbial symbiosis. However, the full implications of these results cannot be appreciated without the knowledge of the microbial communities associated with natural Drosophila populations. In particular, it is not clear whether laboratory cultures can serve as an accurate model of host–microbe interactions that occur in the wild, or those that have occurred over evolutionary time. To fill this gap, we characterized natural bacterial communities associated with 14 species of Drosophila and related genera collected from distant geographic locations. To represent the ecological diversity of Drosophilids, examined species included fruit-, flower-, mushroom-, and cactus-feeders. In parallel, wild host populations were compared to laboratory strains, and controlled experiments were performed to assess the importance of host species and diet in shaping bacterial microbiome composition. We find that Drosophilid flies have taxonomically restricted bacterial communities, with 85% of the natural bacterial microbiome composed of only four bacterial families. The dominant bacterial taxa are widespread and found in many different host species despite the taxonomic, ecological, and geographic diversity of their hosts. Both natural surveys and laboratory experiments indicate that host diet plays a major role in shaping the Drosophila bacterial microbiome. Despite this, the internal bacterial microbiome represents only a highly reduced subset of the external bacterial communities, suggesting that the host exercises some level of control over the bacteria that inhabit its digestive tract. Finally, we show that laboratory strains provide only a limited model of natural host–microbe interactions. Bacterial taxa used in experimental studies are rare or absent in wild Drosophila populations, while the most abundant associates of natural Drosophila populations are rare in the lab

    State owned enterprises as bribe payers: the role of institutional environment

    Get PDF
    Our paper draws attention to a neglected channel of corruption—the bribe payments by state-owned enterprises (SOEs). This is an important phenomenon as bribe payments by SOEs fruitlessly waste national resources, compromising public welfare and national prosperity. Using a large dataset of 30,249 firms from 50 countries, we show that, in general, SOEs are less likely to pay bribes for achieving organizational objectives owing to their political connectivity. However, in deteriorated institutional environments, SOEs may be subjected to potential managerial rent-seeking behaviors, which disproportionately increase SOE bribe propensity relative to privately owned enterprises. Specifically, our findings highlight the importance of fostering democracy and rule of law, reducing prevalence of corruption and shortening power distance in reducing the incidence of SOE bribery
    corecore