2,532 research outputs found

    The SiC problem: astronomical and meteoritic evidence

    Get PDF
    Pre-solar grains of silicon carbide found in meteorites and interpreted as having had an origin around carbon stars from their isotopic composition, have all been found to be of the beta-SiC polytype. Yet to date fits to the 11.3 microns SiC emission band of carbon stars had been obtained only for alpha-SiC grains. We present thin film infrared (IR) absorption spectra measured in a diamond anvil cell for both the alpha- and beta- polymorphs of synthetic SiC and compare the results with previously published spectra taken using the KBr matrix method. We find that our thin film spectra have positions nearly identical to those obtained previously from finely ground samples in KBr. Hence, we show that this discrepancy has arisen from inappropriate `KBr corrections' having been made to laboratory spectra of SiC particles dispersed in KBr matrices. We re-fit a sample of carbon star mid-IR spectra, using laboratory data with no KBr correction applied, and show that beta-SiC grains fit the observations, while alpha-SiC grains do not. The discrepancy between meteoritic and astronomical identifications of the SiC-type is therefore removed. This work shows that the diamond anvil cell thin film method can be used to produce mineral spectra applicable to cosmic environments without further manipulation.Comment: to be published in Astrophysical Journal Letter 4 pages, 3 figure

    Fluctuation-Dissipation Theorem in Nonequilibrium Steady States

    Full text link
    In equilibrium, the fluctuation-dissipation theorem (FDT) expresses the response of an observable to a small perturbation by a correlation function of this variable with another one that is conjugate to the perturbation with respect to \emph{energy}. For a nonequilibrium steady state (NESS), the corresponding FDT is shown to involve in the correlation function a variable that is conjugate with respect to \emph{entropy}. By splitting up entropy production into one of the system and one of the medium, it is shown that for systems with a genuine equilibrium state the FDT of the NESS differs from its equilibrium form by an additive term involving \emph{total} entropy production. A related variant of the FDT not requiring explicit knowledge of the stationary state is particularly useful for coupled Langevin systems. The \emph{a priori} surprising freedom apparently involved in different forms of the FDT in a NESS is clarified.Comment: 6 pages; EPL, in pres

    On the hyperbolicity and causality of the relativistic Euler system under the kinetic equation of state

    Full text link
    We show that a pair of conjectures raised in [11] concerning the construction of normal solutions to the relativistic Boltzmann equation are valid. This ensures that the results in [11] hold for any range of positive temperatures and that the relativistic Euler system under the kinetic equation of state is hyperbolic and the speed of sound cannot overcome c/3c/\sqrt{3}.Comment: 6 pages. Abridged version; full version to appear in Commun. Pure Appl. Ana

    The Curious Conundrum Regarding Sulfur Abundances In Planetary Nebulae

    Get PDF
    Sulfur abundances derived from optical emission line measurements and ionization correction factors in planetary nebulae are systematically lower than expected for the objects' metallicities. We have carefully considered a large range of explanations for this "sulfur anomaly", including: (1) correlations between the size of the sulfur deficit and numerous nebular and central star properties; (2) ionization correction factors which under-correct for unobserved ions; (3) effects of dielectronic recombination on the sulfur ionization balance; (4) sequestering of S into dust and/or molecules; and (5) excessive destruction of S or production of O by AGB stars. It appears that all but the second scenario can be ruled out. However, we find evidence that the sulfur deficit is generally reduced but not eliminated when S^+3 abundances determined directly from IR measurements are used in place of the customary sulfur ionization correction factor. We tentatively conclude that the sulfur anomaly is caused by the inability of commonly used ICFs to properly correct for populations of ionization stages higher than S^+2.Comment: 40 pages, 14 figures, 3 tables. Accepted for publication in the Astrophysical Journa

    Measurement of Stochastic Entropy Production

    Full text link
    Using fluorescence spectroscopy we directly measure entropy production of a single two-level system realized experimentally as an optically driven defect center in diamond. We exploit a recent suggestion to define entropy on the level of a single stochastic trajectory (Seifert, Phys. Rev. Lett. {\bf 95}, 040602 (2005)). Entropy production can then be split into one of the system itself and one of the surrounding medium. We demonstrate that the total entropy production obeys various exact relations for finite time trajectories.Comment: Phys. Rev. Lett., in pres

    Irreversible effects of memory

    Full text link
    The steady state of a Langevin equation with short ranged memory and coloured noise is analyzed. When the fluctuation-dissipation theorem of second kind is not satisfied, the dynamics is irreversible, i.e. detailed balance is violated. We show that the entropy production rate for this system should include the power injected by ``memory forces''. With this additional contribution, the Fluctuation Relation is fairly verified in simulations. Both dynamics with inertia and overdamped dynamics yield the same expression for this additional power. The role of ``memory forces'' within the fluctuation-dissipation relation of first kind is also discussed.Comment: 6 pages, 1 figure, publishe

    Probability density functions of work and heat near the stochastic resonance of a colloidal particle

    Get PDF
    We study experimentally and theoretically the probability density functions of the injected and dissipated energy in a system of a colloidal particle trapped in a double well potential periodically modulated by an external perturbation. The work done by the external force and the dissipated energy are measured close to the stochastic resonance where the injected power is maximum. We show a good agreement between the probability density functions exactly computed from a Langevin dynamics and the measured ones. The probability density function of the work done on the particle satisfies the fluctuation theorem

    Mobility and Diffusion of a Tagged Particle in a Driven Colloidal Suspension

    Full text link
    We study numerically the influence of density and strain rate on the diffusion and mobility of a single tagged particle in a sheared colloidal suspension. We determine independently the time-dependent velocity autocorrelation functions and, through a novel method, the response functions with respect to a small force. While both the diffusion coefficient and the mobility depend on the strain rate the latter exhibits a rather weak dependency. Somewhat surprisingly, we find that the initial decay of response and correlation functions coincide, allowing for an interpretation in terms of an 'effective temperature'. Such a phenomenological effective temperature recovers the Einstein relation in nonequilibrium. We show that our data is well described by two expansions to lowest order in the strain rate.Comment: submitted to EP

    Violation of the Einstein relation in Granular Fluids: the role of correlations

    Full text link
    We study the linear response in different models of driven granular gases. In some situations, even if the the velocity statistics can be strongly non-Gaussian, we do not observe appreciable violations of the Einstein formula for diffusion versus mobility. The situation changes when strong correlations between velocities and density are present: in this case, although a form of fluctuation-dissipation relation holds, the differential velocity response of a particle and its velocity self-correlation are no more proportional. This happens at high densities and strong inelasticities, but still in the fluid-like (and ergodic) regime.Comment: 18 pages, 6 figures, submitted for publicatio
    • …
    corecore