12 research outputs found

    Polyamine Transport in Aspergillus nidulans

    No full text

    Transcriptional map of chromosome region 6q26-q21

    No full text
    We present the transcription map of chromosome region 6q16-->q21 by mapping fifteen known genes within this region. Five genes lay in the subregion containing a tumor suppressor gene, eight genes are located in the subregion harboring a senescence gene, and two genes are distal to the latter region. The precise location of the genes was obtained using a previously described translocation and deletion mouse/human hybrid panel. An even more accurate definition was possible for the genes spanning the senescence gene region, since a previously described YAC contig with its restriction map was available. From this transcription map it is possible to derive a large region of synteny with mouse chromosome 10

    The EU-funded I3LUNG Project: Integrative Science, Intelligent Data Platform for Individualized LUNG Cancer Care With Immunotherapy

    No full text
    Although immunotherapy (IO) has changed the paradigm for the treatment of patients with advanced non-small cell lung cancers (aNSCLC), only around 30% to 50% of treated patients experience a long-term benefit from IO. Furthermore, the identification of the 30 to 50% of patients who respond remains a major challenge, as programmed Death-Ligand 1 (PD-L1) is currently the only biomarker used to predict the outcome of IO in NSCLC patients despite its limited efficacy. Considering the dynamic complexity of the immune system-tumor microenvironment (TME) and its interaction with the host's and patient's behavior, it is unlikely that a single biomarker will accurately predict a patient's outcomes. In this scenario, Artificial Intelligence (AI) and Machine Learning (ML) are becoming essential to the development of powerful decision-making tools that are able to deal with this high-complexity and provide individualized predictions to better match treatments to individual patients and thus improve patient outcomes and reduce the economic burden of aNSCLC on healthcare systems. I3LUNG is an international, multicenter, retrospective and prospective, observational study of patients with aNSCLC treated with IO, entirely funded by European Union (EU) under the Horizon 2020 (H2020) program. Using AI-based tools, the aim of this study is to promote individualized treatment in aNSCLC, with the goals of improving survival and quality of life, minimizing or preventing undue toxicity and promoting efficient resource allocation. The final objective of the project is the construction of a novel, integrated, AI-assisted data storage and elaboration platform to guide IO administration in aNSCLC, ensuring easy access and cost-effective use by healthcare providers and patients

    Polyamines in microorganisms

    No full text
    corecore