581 research outputs found
Very Extended and at low levels, Gravity and Supergravity
We define a level for a large class of Lorentzian Kac-Moody algebras. Using
this we find the representation content of very extended and
(i.e. ) at low levels in terms of and
representations respectively. The results are consistent with the conjectured
very extended and symmetries of gravity and maximal supergravity
theories given respectively in hep-th/0104081 and hep-th/0107209. We explain
how these results provided further evidence for these conjectures.Comment: 16 pages, plain tex (equation 3.3 modified and one reference
expanded
Linearization of donor DNA during plasmid transformation in Neisseria gonorrhoeae.
We examined the fate of plasmid DNA after uptake during transformation in Neisseria gonorrhoeae. An 11.5-kilobase plasmid, pFA10, was processed to linear double-stranded DNA during uptake by competent cells, but cleavage of pFA10 was not site specific. A minority of pFA10 entered as open circles. A 42-kilobase plasmid, pFA14, was degraded into small fragments during uptake; no intracellular circular forms of pFA14 were evident. Since pFA10 DNA linearized by a restriction enzyme was not further cut during uptake, the endonucleolytic activity associated with entry of plasmid DNA appeared to act preferentially on circular DNA. Although linear plasmid DNA was taken up into a DNase-resistant state as efficiently as circular DNA, linear plasmid DNA transformed much less efficiently than circular plasmid DNA. These data suggest that during entry transforming plasmid DNA often is processed to double-stranded linear molecules; transformants may arise when some molecules are repaired to form circles. Occasional molecules which enter as intact circles may also lead to transformants
Expression of gonococcal transferrin-binding protein 1 causes Escherichia coli to bind human transferrin.
The gene for gonococcal transferrin-binding protein 1 (TBP1) was cloned behind an inducible promoter in Escherichia coli. The resultant strain was capable of binding human transferrin with the same specificity as that of the gonococcus. E. coli expressing TBP1 did not internalize transferrin-bound iron or grow on transferrin as a sole iron source
3-dimensional Cauchy-Riemann structures and 2nd order ordinary differential equations
The equivalence problem for second order ODEs given modulo point
transformations is solved in full analogy with the equivalence problem of
nondegenerate 3-dimensional CR structures. This approach enables an analog of
the Feffereman metrics to be defined. The conformal class of these (split
signature) metrics is well defined by each point equivalence class of second
order ODEs. Its conformal curvature is interpreted in terms of the basic point
invariants of the corresponding class of ODEs
Application of Discrete Differential Forms to Spherically Symmetric Systems in General Relativity
In this article we describe applications of Discrete Differential Forms in
computational GR. In particular we consider the initial value problem in vacuum
space-times that are spherically symmetric. The motivation to investigate this
method is mainly its manifest coordinate independence. Three numerical schemes
are introduced, the results of which are compared with the corresponding
analytic solutions. The error of two schemes converges quadratically to zero.
For one scheme the errors depend strongly on the initial data.Comment: 22 pages, 6 figures, accepted by Class. Quant. Gra
Animal displacement from marine energy development : Mechanisms and consequences
This work would not be possible without funding support from the U.S. Department of Energy, Energy Efficiency and Renewable Energy Water Power Technologies Office to Pacific Northwest National Laboratory (PNNL) under contract DE-AC05- 76RL01830 . We are grateful to all the international marine energy researchers and regulatory advisors who attended the online Expert Forum hosted by OES-Environmental on December 7th, 2022, and provided feedback and input on an earlier version of this work. We also thank Stephanie King (PNNL) for creating the original illustrations, as well as the anonymous reviewers for their constructive feedback.For marine wave and tidal energy to successfully contribute to global renewable energy goals and climate change mitigation, marine energy projects need to expand beyond small deployments to large-scale arrays. However, with large-scale projects come potential environmental effects not observed at the scales of single devices and small arrays. One of these effects is the risk of displacing marine animals from their preferred habitats or their migration routes, which may increase with the size of arrays and location. Many marine animals may be susceptible to some level of displacement once large marine energy arrays are increasingly integrated into the seascape, including large migratory animals, non-migratory pelagic animals with large home ranges, and benthic and demersal mobile organisms with more limited ranges, among many others. Yet, research around the mechanisms and effects of displacement have been hindered by the lack of clarity within the international marine energy community regarding the definition of displacement, how it occurs, its consequences, species of concern, and methods to investigate the outcomes. This review paper leveraged lessons learned from other industries, such as offshore development, to establish a definition of displacement in the marine energy context, explore which functional groups of marine animals may be affected and in what way, and identify pathways for investigating displacement through modeling and monitoring. In the marine energy context, we defined displacement as the outcome of one of three mechanisms (i.e., attraction, avoidance, and exclusion) triggered by an animal's response to one or more stressors acting as a disturbance, with various consequences at the individual through population levels. The knowledge gaps highlighted in this study will help the regulatory and scientific communities prepare for mitigating, observing, measuring, and characterizing displacement of various animals around marine energy arrays in order to prevent irreversible consequences.Peer reviewe
Currents and Superpotentials in classical gauge invariant theories I. Local results with applications to Perfect Fluids and General Relativity
E. Noether's general analysis of conservation laws has to be completed in a
Lagrangian theory with local gauge invariance. Bulk charges are replaced by
fluxes of superpotentials. Gauge invariant bulk charges may subsist when
distinguished one-dimensional subgroups are present. As a first illustration we
propose a new {\it Affine action} that reduces to General Relativity upon gauge
fixing the dilatation (Weyl 1918 like) part of the connection and elimination
of auxiliary fields. It allows a comparison of most gravity superpotentials and
we discuss their selection by the choice of boundary conditions. A second and
independent application is a geometrical reinterpretation of the convection of
vorticity in barotropic nonviscous fluids. We identify the one-dimensional
subgroups responsible for the bulk charges and thus propose an impulsive
forcing for creating or destroying selectively helicity. This is an example of
a new and general Forcing Rule.Comment: 64 pages, LaTeX. Version 2 has two more references and one misprint
corrected. Accepted in Classical and Quantum Gravit
Covariance properties and regularization of conserved currents in tetrad gravity
We discuss the properties of the gravitational energy-momentum 3-form within
the tetrad formulation of general relativity theory. We derive the covariance
properties of the quantities describing the energy-momentum content under
Lorentz transformations of the tetrad. As an application, we consider the
computation of the total energy (mass) of some exact solutions of Einstein's
general relativity theory which describe compact sources with asymptotically
flat spacetime geometry. As it is known, depending on the choice of tetrad
frame, the formal total integral for such configurations may diverge. We
propose a natural regularization method which yields finite values for the
total energy-momentum of the system and demonstrate how it works on a number of
explicit examples.Comment: 36 pages, Revtex, no figures; small changes, published versio
Twistor Bundles, Einstein Equations and Real Structures
We consider sphere bundles P and P' of totally null planes of maximal
dimension and opposite self-duality over a 4-dimensional manifold equipped with
a Weyl or Riemannian geometry. The fibre product PP' of P and P' is found to be
appropriate for the encoding of both the selfdual and the Einstein-Weyl
equations for the 4-metric. This encoding is realized in terms of the
properties of certain well defined geometrical objects on PP'. The formulation
is suitable for both complex- and real-valued metrics. It unifies results for
all three possible real signatures. In the purely Riemannian positive definite
case it implies the existence of a natural almost hermitian structure on PP'
whose integrability conditions correspond to the self-dual Einstein equations
of the 4-metric. All Einstein equations for the 4-metric are also encoded in
the properties of this almost hermitian structure on PP'.Comment: Paper accepted in Classical and Quantum Gravity, Special issue in
honour of Professor Andrzej Trautma
Tropospheric Carbon Monoxide Measurements from the Scanning High-Resolution Interferometer Sounder on 7 September 2000 in Southern Africa During SAFARI 2000
[1] Retrieved tropospheric carbon monoxide (CO) column densities are presented for more than 9000 spectra obtained by the University of Wisconsin-Madison (UWis) Scanning High-Resolution Interferometer Sounder (SHIS) during a flight on the NASA ER-2 on 7 September 2000 as part of the Southern African Regional Science Initiative (SAFARI 2000) dry season field campaign. Enhancements in tropospheric column CO were detected in the vicinity of a controlled biomass burn in the Timbavati Game Reserve in northeastern South Africa and over the edge of the river of smoke in south central Mozambique. Relatively clean air was observed over the far southern coast of Mozambique. Quantitative comparisons are presented with in situ measurements from five different instruments flying on two other aircraft: the University of Washington Convair-580 (CV) and the South African Aerocommander JRB in the vicinity of the Timbavati fire. Measured tropospheric CO columns (extrapolated from 337 to 100 mb) of 2.1 × 1018 cm−2 in background air and up to 1.5 × 1019 cm−2 in the smoke plume agree well with SHIS retrieved tropospheric CO columns of (2.3 ± 0.25) × 1018 cm−2 over background air near the fire and (1.5 ± 0.35) × 1019 cm−2 over the smoke plume. Qualitative comparisons are presented with three other in situ CO profiles obtained by the South African JRA aircraft over Mozambique and northern South Africa showing the influence of the river of smoke
- …