118 research outputs found

    Farmer-Directed On-Farm Experimentation Examining the Impact of Companion Planting Barley and Oats on Timothy-Lucerne Forage Establishment in Central Newfoundland

    Get PDF
    Growing barley or oats in the year of forage establishment is a common agronomic practice in marginal growing regions, but is often not recommended to growers in Newfoundland. Spaner & Todd (2003) reported that barley seeded at rates of 100-150 kg seed/ha and undersown with a timothy-clover mixture (harvested at mid-milk) resulted in the planting year in greater forage yield of poorer quality than pure-stand timothy-clover. A barley seeding rate of 100 kg seed/ha did not impede forage production in the subsequent year

    Chapter 2 B Lymphocytes in Cancer Immunology

    Get PDF
    Abstract The role of B lymphocytes in the pathogenesis and treatment of cancer has not received as much attention as the role of T cells. However, most patients with solid tumors harbor circulating antitumor antibodies and most tumors contain a population of infiltrating B cells implying an association between oncogenic events and B-cell activation. B-cell immunity can be beneficial by providing antibody-mediated protection from oncogenic viruses or a source of recombinant tumor-specific antibodies that can be used in combination with chemotherapeutic regimens. However, activation of B cells may also be detrimental to an effective antitumor response. Tumor-reactive antibodies and B cells often recognize antigens that are generated during the unscheduled apoptotic and necrotic death processes, which accompany tumor progression and may be involved in wound-healing processes that promote tumor growth and impair protective T-cell responses. Therefore, methods to eliminate autoreactive B cells, or switch them to a B effector-1 (Be-1) phenotype that amplifies Th1/Tc1-type T-cell responses, which are typically associated with effective antitumor responses, may improve the clinical outcomes of T-cell-mediated immunotherapies. Possible strategies include the administration of B-celldepleting monoclonal antibodies, use of targeted B-cell stimulatory agents such as Toll-like Receptor agonists, and adoptive transfer of large numbers of ex vivo generated tumor-reactive Be-1 cells

    Maize and upland rice traits of importance for farmers practicing manual rainfed agriculture in the humid tropics : a Panamanian case-study

    Get PDF
    The agronomic practices and concerns of poor farmers in comparable ecozones are often similar across countries and regions. Crop ideotypes have helped guide selection for yield under high fertility monoculture conditions in formal breeding programs and could be used to direct breeding for the agricultural conditions of poor farmers. However, the objectives and selection criteria of poor farmers may differ from those of formal breeding programs. This study illustrates a simple survey method for detecting crop traits that are important to poor farmers, and describes results for upland rice and maize ideotypes cropped by swidden agriculturalists in Panama. Our results suggest that formal breeding programs are working on individual crop traits that are important to poor farmers, but they may not be developing varieties that incorporate multiple individual traits (ideotypes), which farmers desire. National breeding programs should play crucial roles in identifying and breeding for regional ideotypes that vary with farming practices and cultural preferences. The field survey techniques reported herein are reproducible, quickly orient breeders towards crop traits that are potentially important to farmers, provide information on the processes underpinning trait importance, and capitalize on decades of farmer experience

    Identification of Disease Resistance Parents and Genome-Wide Association Mapping of Resistance in Spring Wheat

    Get PDF
    The likelihood of success in developing modern cultivars depend on multiple factors, including the identification of suitable parents to initiate new crosses, and characterizations of genomic regions associated with target traits. The objectives of the present study were to (a) determine the best economic weights of four major wheat diseases (leaf spot, common bunt, leaf rust, and stripe rust) and grain yield for multi-trait restrictive linear phenotypic selection index (RLPSI), (b) select the top 10% cultivars and lines (hereafter referred as genotypes) with better resistance to combinations of the four diseases and acceptable grain yield as potential parents, and (c) map genomic regions associated with resistance to each disease using genome-wide association study (GWAS). A diversity panel of 196 spring wheat genotypes was evaluated for their reaction to stripe rust at eight environments, leaf rust at four environments, leaf spot at three environments, common bunt at two environments, and grain yield at five environments. The panel was genotyped with the Wheat 90K SNP array and a few KASP SNPs of which we used 23,342 markers for statistical analyses. The RLPSI analysis performed by restricting the expected genetic gain for yield displayed significant (p \u3c 0.05) differences among the 3125 economic weights. Using the best four economic weights, a subset of 22 of the 196 genotypes were selected as potential parents with resistance to the four diseases and acceptable grain yield. GWAS identified 37 genomic regions, which included 12 for common bunt, 13 for leaf rust, 5 for stripe rust, and 7 for leaf spot. Each genomic region explained from 6.6 to 16.9% and together accounted for 39.4% of the stripe rust, 49.1% of the leaf spot, 94.0% of the leaf rust, and 97.9% of the common bunt phenotypic variance combined across all environments. Results from this study provide valuable information for wheat breeders selecting parental combinations for new crosses to develop improved germplasm with enhanced resistance to the four diseases as well as the physical positions of genomic regions that confer resistance, which facilitates direct comparisons for independent mapping studies in the future

    Mapping quantitative trait loci associated with leaf rust resistance in five spring wheat populations using single nucleotide polymorphism markers

    Get PDF
    Growing resistant wheat (Triticum aestivum L) varieties is an important strategy for the control of leaf rust, caused by Puccinia triticina Eriks. This study sought to identify the chromosomal location and effects of leaf rust resistance loci in five Canadian spring wheat cultivars. The parents and doubled haploid lines of crosses Carberry/AC Cadillac, Carberry/Vesper, Vesper/Lillian, Vesper/Stettler and Stettler/Red Fife were assessed for leaf rust severity and infection response in field nurseries in Canada near Swift Current, SK from 2013 to 2015, Morden, MB from 2015 to 2017 and Brandon, MB in 2016, and in New Zealand near Lincoln in 2014. The populations were genotyped with the 90K Infinium iSelect assay and quantitative trait loci (QTL) analysis was performed. A high density consensus map generated based on 14 doubled haploid populations and integrating SNP and SSR markers was used to compare QTL identified in different populations. AC Cadillac contributed QTL on chromosomes 2A, 3B and 7B (2 loci), Carberry on 1A, 2B (2 loci), 2D, 4B (2 loci), 5A, 6A, 7A and 7D, Lillian on 4A and 7D, Stettler on 2D and 6B, Vesper on 1B, 1D, 2A, 6B and 7B (2 loci), and Red Fife on 7A and 7B. Lillian contributed to a novel locus QLr.spa-4A, and similarly Carberry at QLr.spa-5A. The discovery of novel leaf rust resistance QTL QLr.spa-4A and QLr.spa-5A, and several others in contemporary Canada Western Red Spring wheat varieties is a tremendous addition to our present knowledge of resistance gene deployment in breeding. Carberry demonstrated substantial stacking of genes which could be supplemented with the genes identified in other cultivars with the expectation of increasing efficacy of resistance to leaf rust and longevity with little risk of linkage drag

    Differentiation of Chronic Lymphocytic Leukemia B Cells into Immunoglobulin Secreting Cells Decreases LEF-1 Expression

    Get PDF
    Lymphocyte enhancer binding factor 1 (LEF-1) plays a crucial role in B lineage development and is only expressed in B cell precursors as B cell differentiation into mature B and plasma cells silences its expression. Chronic lymphocytic leukemia (CLL) cells aberrantly express LEF-1 and its expression is required for cellular survival. We hypothesized that modification of the differentiation status of CLL cells would result in loss of LEF-1 expression and eliminate the survival advantage provided by its aberrant expression. In this study, we first established a methodology that induces CLL cells to differentiate into immunoglobulin (Ig) secreting cells (ISC) using the TLR9 agonist, CpG, together with cytokines (CpG/c). CpG/c stimulation resulted in dramatic CLL cell phenotypic and morphologic changes, expression of cytoplasmic Ig, and secretion of light chain restricted Ig. CpG/c stimulation also resulted in decreased CLL cell LEF-1 expression and increased Blimp-1 expression, which is crucial for plasma cell differentiation. Further, Wnt pathway activation and cellular survival were impaired in differentiated CLL cells compared to undifferentiated CLL cells. These data support the notion that CLL can differentiate into ISC and that this triggers decreased leukemic cell survival secondary to the down regulation of LEF-1 and decreased Wnt pathway activation

    Significance of Toll-like Receptors Expression in Tumor Growth and Spreading: A Short Review

    Get PDF
    Toll-like receptors (TLRs) are considered now as crucial sensors of innate immunity. Their role in the recognition of pathogens and the initiation of adaptive immune responses against them is well known. However, in last years TLRs have been identified on several tumor cells, including human malignancies. Their expression in cancer was found to be twofold: either promoting or inhibiting tumor progression. It was also demonstrated that several TLRs agonists, either natural or synthetic ones, may have beneficial effect on tumor-mediated disease, leading to potentiation of immune response to tumor-associated antigens. TLR-agonist linked tumor immunotherapy is still in nascent state, but growing rapidly, also in the area of common human malignancies. To date, the most promising and the most frequently studied interaction in tumor immunotherapy trials seems to be TLR9 and its synthetic agonists

    Superantigen reactive Vβ6+ T cells induce perforin/granzyme B mediated caspase-independent apoptosis in tumour cells

    Get PDF
    The endogenous viral superantigen 7 in DBA/2 mice serves as a target antigen on syngeneic ESb-MP lymphoma cells for allogeneic graft-vs-leukaemia reactive cells. Allogeneic viral superantigen 7 reactive Vβ6+ T cells are able to transfer graft-vs-leukaemia reactivity and to kill specifically viral superantigen 7+ ESb-MP tumour cells in vitro. Here we elucidate the mechanism of this superantigen specific cell lysis. Already 10 min after co-incubation with in vitro stimulated Vβ6+ T cells, viral superantigen 7+ ESb-MP tumour cells show an apoptotic phenotype (Annexin V-positivity, DNA-fragmentation). This extremely rapid type of cell death is not mediated by the death inducing ligands CD95L, TRAIL and TNF but by perforin and granzyme B. Surprisingly, neither mitochondria nor any of the known caspases appear to be involved in this type of tumour cell killing. In contrast, nitric oxide, released by activated macrophages and endothelial cells, induces in the same tumour cells another type of apoptosis which is much slower and involves mitochondria and caspase activation. A synergistic effect between the two different effector mechanisms of superantigen reactive donor cytotoxic T lymphocytes and nitric oxide releasing host macrophages and endothelial cells might explain the effective immune rejection of even advanced metastasised cancer in this graft-vs-leukaemia animal model
    corecore