17,880 research outputs found
The Stokes Phenomenon and Quantum Tunneling for de Sitter Radiation in Nonstationary Coordinates
We study quantum tunneling for the de Sitter radiation in the planar
coordinates and global coordinates, which are nonstationary coordinates and
describe the expanding geometry. Using the phase-integral approximation for the
Hamilton-Jacobi action in the complex plane of time, we obtain the
particle-production rate in both coordinates and derive the additional
sinusoidal factor depending on the dimensionality of spacetime and the quantum
number for spherical harmonics in the global coordinates. This approach
resolves the factor of two problem in the tunneling method.Comment: LaTex 10 pages, no figur
Caring for Alaska Native prostate cancer survivors in primary care: a survey of Alaska Tribal Health System providers.
BACKGROUND: Little is known about the constraints of optimizing health care for prostate cancer survivors in Alaska primary care. OBJECTIVE: To describe the experiences and attitudes of primary care providers within the Alaska Tribal Health System (ATHS) regarding the care of prostate cancer survivors. DESIGN: In late October 2011, we emailed a 22-item electronic survey to 268 ATHS primary care providers regarding the frequency of Prostate Specific Antigen (PSA) monitoring for a hypothetical prostate cancer survivor; who should be responsible for the patient's life-long prostate cancer surveillance; who should support the patient's emotional and medical needs as a survivor; and providers' level of comfort addressing recurrence monitoring, erectile dysfunction, urinary incontinence, androgen deprivation therapy, and emotional needs. We used simple logistic regression to examine the association between provider characteristics and their responses to the survivorship survey items. RESULTS: Of 221 individuals who were successfully contacted, a total of 114 responded (52% response rate). Most ATHS providers indicated they would order a PSA test every 12 months (69%) and believed that, ideally, the hypothetical patient's primary care provider should be responsible for his life-long prostate cancer surveillance (60%). Most providers reported feeling either "moderately" or "very" comfortable addressing topics such as prostate cancer recurrence (59%), erectile dysfunction (64%), urinary incontinence (63%), and emotional needs (61%) with prostate cancer survivors. These results varied somewhat by provider characteristics including female sex, years in practice, and the number of prostate cancer survivors seen in their practice. CONCLUSIONS: These data suggest that most primary care providers in Alaska are poised to assume the care of prostate cancer survivors locally. However, we also found that large minorities of providers do not feel confident in their ability to manage common issues in prostate cancer survivorship, implying that continued access to specialists with more expert knowledge would be beneficial
Hepatitis B among Pacific Islanders in Southern California: how is health information associated with screening and vaccination?
We measured Hepatitis B virus (HBV) transmission knowledge and self-reported screening/testing behavior among Pacific Islanders (Guamanians/Chamorros, Samoans, and Tongans) in Southern California. We also examined access and trust by Pacific Islanders of varying health information sources. We administered and analyzed survey data (N = 297), using a convenience sample in Los Angeles, Orange, and San Diego Counties in spring 2009. We found that while Pacific Islander respondents reported that they receive health information from physicians, and largely trust this source, information from and trust in physicians were not statistically significant in explaining whether respondents sought HBV screening or vaccination
Multitask Learning on Graph Neural Networks: Learning Multiple Graph Centrality Measures with a Unified Network
The application of deep learning to symbolic domains remains an active
research endeavour. Graph neural networks (GNN), consisting of trained neural
modules which can be arranged in different topologies at run time, are sound
alternatives to tackle relational problems which lend themselves to graph
representations. In this paper, we show that GNNs are capable of multitask
learning, which can be naturally enforced by training the model to refine a
single set of multidimensional embeddings and decode them
into multiple outputs by connecting MLPs at the end of the pipeline. We
demonstrate the multitask learning capability of the model in the relevant
relational problem of estimating network centrality measures, focusing
primarily on producing rankings based on these measures, i.e. is vertex
more central than vertex given centrality ?. We then show that a GNN
can be trained to develop a \emph{lingua franca} of vertex embeddings from
which all relevant information about any of the trained centrality measures can
be decoded. The proposed model achieves accuracy on a test dataset of
random instances with up to 128 vertices and is shown to generalise to larger
problem sizes. The model is also shown to obtain reasonable accuracy on a
dataset of real world instances with up to 4k vertices, vastly surpassing the
sizes of the largest instances with which the model was trained ().
Finally, we believe that our contributions attest to the potential of GNNs in
symbolic domains in general and in relational learning in particular.Comment: Published at ICANN2019. 10 pages, 3 Figure
Susceptibility of hamsters to clostridium difficile isolates of differing toxinotype
Clostridium difficile is the most commonly associated cause of antibiotic associated disease (AAD), which caused ~21,000 cases of AAD in 2011 in the U.K. alone. The golden Syrian hamster model of CDI is an acute model displaying many of the clinical features of C. difficile disease. Using this model we characterised three clinical strains of C. difficile, all differing in toxinotype; CD1342 (PaLoc negative), M68 (toxinotype VIII) and BI-7 (toxinotype III). The naturally occurring non-toxic strain colonised all hamsters within 1-day post challenge (d.p.c.) with high-levels of spores being shed in the faeces of animals that appeared well throughout the entire experiment. However, some changes including increased neutrophil influx and unclotted red blood cells were observed at early time points despite the fact that the known C. difficile toxins (TcdA, TcdB and CDT) are absent from the genome. In contrast, hamsters challenged with strain M68 resulted in a 45% mortality rate, with those that survived challenge remaining highly colonised. It is currently unclear why some hamsters survive infection, as bacterial and toxin levels and histology scores were similar to those culled at a similar time-point. Hamsters challenged with strain BI-7 resulted in a rapid fatal infection in 100% of the hamsters approximately 26 hr post challenge. Severe caecal pathology, including transmural neutrophil infiltrates and extensive submucosal damage correlated with high levels of toxin measured in gut filtrates ex vivo. These data describes the infection kinetics and disease outcomes of 3 clinical C. difficile isolates differing in toxin carriage and provides additional insights to the role of each toxin in disease progression
Constraining compressed supersymmetry using leptonic signatures
We study the impact of the multi-lepton searches at the LHC on supersymmetric
models with compressed mass spectra. For such models the acceptances of the
usual search strategies are significantly reduced due to requirement of large
effective mass and missing E_T. On the other hand, lepton searches do have much
lower thresholds for missing E_T and p_T of the final state objects. Therefore,
if a model with a compressed mass spectrum allows for multi-lepton final
states, one could derive constraints using multi-lepton searches. For a class
of simplified models we study the exclusion limits using ATLAS multi-lepton
search analyses for the final states containing 2-4 electrons or muons with a
total integrated luminosity of 1-2/fb at \sqrt{s}=7 TeV. We also modify those
analyses by imposing additional cuts, so that their sensitivity to compressed
supersymmetric models increase. Using the original and modified analyses, we
show that the exclusion limits can be competitive with jet plus missing E_T
searches, providing exclusion limits up to gluino masses of 1 TeV. We also
analyse the efficiencies for several classes of events coming from different
intermediate state particles. This allows us to assess exclusion limits in
similar class of models with different cross sections and branching ratios
without requiring a Monte Carlo simulation.Comment: 18 pages, 5 figure
Conclusive quantum steering with superconducting transition edge sensors
Quantum steering allows two parties to verify shared entanglement even if one
measurement device is untrusted. A conclusive demonstration of steering through
the violation of a steering inequality is of considerable fundamental interest
and opens up applications in quantum communication. To date all experimental
tests with single photon states have relied on post-selection, allowing
untrusted devices to cheat by hiding unfavourable events in losses. Here we
close this "detection loophole" by combining a highly efficient source of
entangled photon pairs with superconducting transition edge sensors. We achieve
an unprecedented ~62% conditional detection efficiency of entangled photons and
violate a steering inequality with the minimal number of measurement settings
by 48 standard deviations. Our results provide a clear path to practical
applications of steering and to a photonic loophole-free Bell test.Comment: Preprint of 7 pages, 3 figures; the definitive version is published
in Nature Communications, see below. Also, see related experimental work by
A. J. Bennet et al., arXiv:1111.0739 and B. Wittmann et al., arXiv:1111.076
Molecular Valves for Controlling Gas Phase Transport Made from Discrete Angstrom-Sized Pores in Graphene
An ability to precisely regulate the quantity and location of molecular flux
is of value in applications such as nanoscale 3D printing, catalysis, and
sensor design. Barrier materials containing pores with molecular dimensions
have previously been used to manipulate molecular compositions in the gas
phase, but have so far been unable to offer controlled gas transport through
individual pores. Here, we show that gas flux through discrete angstrom-sized
pores in monolayer graphene can be detected and then controlled using
nanometer-sized gold clusters, which are formed on the surface of the graphene
and can migrate and partially block a pore. In samples without gold clusters,
we observe stochastic switching of the magnitude of the gas permeance, which we
attribute to molecular rearrangements of the pore. Our molecular valves could
be used, for example, to develop unique approaches to molecular synthesis that
are based on the controllable switching of a molecular gas flux, reminiscent of
ion channels in biological cell membranes and solid state nanopores.Comment: to appear in Nature Nanotechnolog
- …
