80 research outputs found

    Targeted calcium influx boosts cytotoxic T lymphocyte function in the tumour microenvironment

    Get PDF
    Adoptive cell transfer utilizing tumour-targeting cytotoxic T lymphocytes (CTLs) is one of the most effective immunotherapies against haematological malignancies, but significant clinical success has not yet been achieved in solid tumours due in part to the strong immunosuppressive tumour microenvironment. Here, we show that suppression of CTL killing by CD4+CD25+Foxp+ regulatory T cell (Treg) is in part mediated by TGFβ-induced inhibition of inositol trisphosphate (IP3) production, leading to a decrease in T cell receptor (TCR)-dependent intracellular Ca2+ response. Highly selective optical control of Ca2+ signalling in adoptively transferred CTLs enhances T cell activation and IFN-γ production in vitro, leading to a significant reduction in tumour growth in mice. Altogether, our findings indicate that the targeted optogenetic stimulation of intracellular Ca2+ signal allows for the remote control of cytotoxic effector functions of adoptively transferred T cells with outstanding spatial resolution by boosting T cell immune responses at the tumour sites

    Human breast cancer-derived soluble factors facilitate CCL19-induced chemotaxis of human dendritic cells

    Get PDF
    Breast cancer remains as a challenging disease with high mortality in women. Increasing evidence points the importance of understanding a crosstalk between breast cancers and immune cells, but little is known about the effect of breast cancer-derived factors on the migratory properties of dendritic cells (DCs) and their consequent capability in inducing T cell immune responses. Utilizing a unique 3D microfluidic device, we here showed that breast cancers (MCF-7, MDA-MB-231, MDA-MB-436 and SK-BR-3)-derived soluble factors increase the migration of DCs toward CCL19. The enhanced migration of DCs was mainly mediated via the highly activated JNK/c-Jun signaling pathway, increasing their directional persistence, while the velocity of DCs was not influenced, particularly when they were co-cultured with triple negative breast cancer cells (TNBCs or MDA-MB-231 and MDA-MB-436). The DCs up-regulated inflammatory cytokines IL-1?? and IL-6 and induced T cells more proliferative and resistant against activation-induced cell death (AICD), which secret high levels of inflammatory cytokines IL-1??, IL-6 and IFN-??. This study demonstrated new possible evasion strategy of TNBCs utilizing their soluble factors that exploit the directionality of DCs toward chemokine responses, leading to the building of inflammatory milieu which may support their own growth.ope

    Analysis of apoptosis methods recently used in Cancer Research and Cell Death & Disease publications

    Get PDF

    近世の流通システムと産業組織:宿駅と酒造業の経済的機能に関する考察

    Get PDF

    Not Available

    No full text
    Not AvailableTwo Listeria-like isolates obtained from mangrove swamps in Goa, India were characterized using polyphasic combinations of phenotypic, chemotaxonomic and whole-genome sequence (WGS)-based approaches. The isolates presented as short, non-spore-forming, Gram-positive rods, that were non-motile, oxidase-negative, catalase-positive and exhibited α-haemolysis on 5 % sheep- and horse-blood agar plates. The 16S rRNA gene sequences exhibited 93.7-99.7 % nucleotide identity to other Listeria species and had less than 92 % nucleotide identity to species of closely related genera, indicating that the isolates are de facto members of the genus Listeria. Their overall fatty acid composition resembled that of other Listeria species, with quantitative differences in iso C15 : 0, anteiso C15 : 0, iso C16 : 0, C16 : 0, iso C17 : 0 and anteiso C17 : 0 fatty acid profiles. Phylogeny based on 406 core coding DNA sequences grouped these two isolates in a monophyletic clade within the genus Listeria. WGS-based average nucleotide identity and in silico DNA-DNA hybridization values were lower than the recommended cut-off values of 95 and 70 %, respectively, to the other Listeria species, indicating that they are founding members of a novel Listeria species. We suggest the name Listeriagoaensis sp. nov. be created and the type strain is ILCC801T (=KCTC 33909;=DSM 29886;=MCC 3285).Not Availabl
    corecore