1,285 research outputs found
A Light Stop with Flavor in Natural SUSY
The discovery of a SM-like Higgs boson near 125 GeV and the flavor texture of
the Standard Model motivate the investigation of supersymmetric quiver-like BSM
extensions. We study the properties of such a minimal class of models which
deals naturally with the SM parameters. Considering experimental bounds as well
as constraints from flavor physics and Electro-Weak Precision Data, we find the
following. In a self-contained minimal model - including the full dynamics of
the Higgs sector - top squarks below a TeV are in tension with b->s{\gamma}
constraints. Relaxing the assumption concerning the mass generation of the
heavy Higgses, we find that a stop not far from half a TeV is allowed. The
models have some unique properties, e.g. an enhancement of the h->
b\bar{b},\tau\bar{{\tau}} decays relative to the h->\gamma{\gamma} one, a
gluino about 3 times heavier than the stop, an inverted hierarchy of about 3-20
between the squarks of the first two generations and the stop, relatively light
Higgsino neutralino or stau NLSP, as well as heavy Higgses and a W' which may
be within reach of the LHC.Comment: LaTeX, 22 pages, 4 figures; V2: references adde
A microscopic theory of gauge mediation
We construct models of indirect gauge mediation where the dynamics
responsible for breaking supersymmetry simultaneously generates a weakly
coupled subsector of messengers. This provides a microscopic realization of
messenger gauge mediation where the messenger and hidden sector fields are
unified into a single sector. The UV theory is SQCD with massless and massive
quarks plus singlets, and at low energies it flows to a weakly coupled quiver
gauge theory. One node provides the primary source of supersymmetry breaking,
which is then transmitted to the node giving rise to the messenger fields.
These models break R-symmetry spontaneously, produce realistic gaugino and
sfermion masses, and give a heavy gravitino.Comment: 24 pages, 2 figures, accepted to JHEP for publicatio
Flavor of quiver-like realizations of effective supersymmetry
We present a class of supersymmetric models which address the flavor puzzle
and have an inverted hierarchy of sfermions. Their construction involves
quiver-like models with link fields in generic representations. The magnitude
of Standard-Model parameters is obtained naturally and a relatively heavy Higgs
boson is allowed without fine tuning. Collider signatures of such models are
possibly within the reach of LHC in the near future.Comment: LaTeX, 17 pages, 3 figures. V2: reference adde
On the Spectrum of Direct Gaugino Mediation
In direct gauge mediation, the gaugino masses are anomalously small, giving
rise to a split SUSY spectrum. Here we investigate the superpartner spectrum in
a minimal version of "direct gaugino mediation." We find that the sfermion
masses are comparable to those of the gauginos - even in the hybrid
gaugino-gauge mediation regime - if the messenger scale is sufficiently small.Comment: 21 pages, 4 figures; V2: refs. adde
A Complete Model of Low-Scale Gauge Mediation
Recent signs of a Standard Model-like Higgs at 125 GeV point towards large
A-terms in the MSSM. This presents special challenges for gauge mediation,
which by itself predicts vanishing A-terms at the messenger scale. In this
paper, we review the general problems that arise when extending gauge mediation
to achieve large A-terms, and the mechanisms that exist to overcome them. Using
these mechanisms, we construct weakly-coupled models of low-scale gauge
mediation with extended Higgs-messenger couplings that generate large A-terms
at the messenger scale and viable mu/B_mu-terms. Our models are simple,
economical, and complete realizations of supersymmetry at the weak scale.Comment: 33 pages; v2: refs added, minor change
The case for inclusive area profiling applied in geographic information systems
This paper introduces the history and role of consultation processes of contemporary planning and, after presenting the popularity and criticisms of different practices including communities in urban decision making, it explores how rational planning tools like the geographic information system (GIS) could be exploited to reshape consultation and formally include subjective data in traditional area profiling. Focusing on the popular consultation tool of community mapping, primary and secondary research methods (a literature review, seven interviews to planners and two observational studies) identified seven different problems with contemporary community mapping: spatial and temporal scale, generalisation, integration, representativeness, accessibility, relatedness and visualisation. The conceptualisation, physical modelling and testing of a new community mapping procedure ‘Submap’ is then used to address these problems and discuss (a) the strengths and limitations of formalising community mapping activities for area profiling in GIS and (b) the role of pragmatic research in promoting inclusive practices in contemporary planning
Single-Scale Natural SUSY
We consider the prospects for natural SUSY models consistent with current
data. Recent constraints make the standard paradigm unnatural so we consider
what could be a minimal extension consistent with what we now know. The most
promising such scenarios extend the MSSM with new tree-level Higgs interactions
that can lift its mass to at least 125 GeV and also allow for flavor-dependent
soft terms so that the third generation squarks are lighter than current bounds
on the first and second generation squarks. We argue that a common feature of
almost all such models is the need for a new scale near 10 TeV, such as a scale
of Higgsing or confinement of a new gauge group. We consider the question
whether such a model can naturally derive from a single mass scale associated
with supersymmetry breaking. Most such models simply postulate new scales,
leaving their proximity to the scale of MSSM soft terms a mystery. This
coincidence problem may be thought of as a mild tuning, analogous to the usual
mu problem. We find that a single mass scale origin is challenging, but suggest
that a more natural origin for such a new dynamical scale is the gravitino
mass, m_{3/2}, in theories where the MSSM soft terms are a loop factor below
m_{3/2}. As an example, we build a variant of the NMSSM where the singlet S is
composite, and the strong dynamics leading to compositeness is triggered by
masses of order m_{3/2} for some fields. Our focus is the Higgs sector, but our
model is compatible with a light stop (with the other generation squarks heavy,
or with R-parity violation or another mechanism to hide them from current
searches). All the interesting low-energy mass scales, including linear terms
for S playing a key role in EWSB, arise dynamically from the single scale
m_{3/2}. However, numerical coefficients from RG effects and wavefunction
factors in an extra dimension complicate the otherwise simple story.Comment: 32 pages, 3 figures; version accepted by JHE
Supersymmetry with Light Stops
Recent LHC data, together with the electroweak naturalness argument, suggest
that the top squarks may be significantly lighter than the other sfermions. We
present supersymmetric models in which such a split spectrum is obtained
through "geometries": being "close to" electroweak symmetry breaking implies
being "away from" supersymmetry breaking, and vice versa. In particular, we
present models in 5D warped spacetime, in which supersymmetry breaking and
Higgs fields are located on the ultraviolet and infrared branes, respectively,
and the top multiplets are localized to the infrared brane. The hierarchy of
the Yukawa matrices can be obtained while keeping near flavor degeneracy
between the first two generation sfermions, avoiding stringent constraints from
flavor and CP violation. Through the AdS/CFT correspondence, the models can be
interpreted as purely 4D theories in which the top and Higgs multiplets are
composites of some strongly interacting sector exhibiting nontrivial dynamics
at a low energy. Because of the compositeness of the Higgs and top multiplets,
Landau pole constraints for the Higgs and top couplings apply only up to the
dynamical scale, allowing for a relatively heavy Higgs boson, including m_h =
125 GeV as suggested by the recent LHC data. We analyze electroweak symmetry
breaking for a well-motivated subset of these models, and find that fine-tuning
in electroweak symmetry breaking is indeed ameliorated. We also discuss a flat
space realization of the scenario in which supersymmetry is broken by boundary
conditions, with the top multiplets localized to a brane while other matter
multiplets delocalized in the bulk.Comment: 27 pages, 7 figure
Excess Higgs Production in Neutralino Decays
The ATLAS and CMS experiments have recently claimed discovery of a Higgs
boson-like particle at ~5 sigma confidence and are beginning to test the
Standard Model predictions for its production and decay. In a variety of
supersymmetric models, a neutralino NLSP can decay dominantly to the Higgs and
the LSP. In natural SUSY models, a light third generation squark decaying
through this chain can lead to large excess Higgs production while evading
existing BSM searches. Such models can be observed at the 8 TeV LHC in channels
exploiting the rare diphoton decays of the Higgs produced in the cascade decay.
Identifying a diphoton resonance in association with missing energy, a lepton,
or b-tagged jets is a promising search strategy for discovery of these models,
and would immediately signal new physics involving production of a Higgs boson.
We also discuss the possibility that excess Higgs production in these SUSY
decays can be responsible for enhancements of up to 50% over the SM prediction
for the observed rate in the existing inclusive diphoton searches, a scenario
which would likely by the end of the 8 TeV run be accompanied by excesses in
the diphoton + lepton/MET and SUSY multi-lepton/b searches and a potential
discovery in a diphoton + 2b search.Comment: 42 pages, 19 figure
Bounds on SCFTs from Conformal Perturbation Theory
The operator product expansion (OPE) in 4d (super)conformal field theory is
of broad interest, for both formal and phenomenological applications. In this
paper, we use conformal perturbation theory to study the OPE of nearly-free
fields coupled to SCFTs. Under fairly general assumptions, we show that the OPE
of a chiral operator of dimension with its complex
conjugate always contains an operator of dimension less than . Our
bounds apply to Banks-Zaks fixed points and their generalizations, as we
illustrate using several examples.Comment: 36 pages; v2: typos fixed, minor change
- …
