155 research outputs found
Nanostructured thermoelectric generator for energy harvesting
This paper presents the development processes towards a new generation of nanostructured thermoelectric generators for power harvesting from small temperature gradients by using a combination of traditional silicon microfabrication techniques, electroplating and submicron ion-track nanolithography. Polyimide nanotemplates with pore diameters ranging from 30nm to 120 nm were fabricated. Preliminary results for Bi2Te3 nanowires (50 and 120 nm diameter) electroplated into polycarbonate ion-track commercial membranes are presented. Bi2Te3 nanowires of R ̄ 3m structure, with preferential orientation in the (015) and (110) crystallographic plans with nearly stoichiometric composition were electroplated. The fine-grained observed microstructure (6-10 nm) and (110) crystalline orientation appear extremely promising for improving thermoelectric material properties
Multilayer Piezoelectric Energy Harvesting Using Single Supply Pre-biasing for Maximum Power Generation
Temperature dependence of a magnetically levitated electromagnetic vibration energy harvester
This is the author accepted manuscript. The final version is available from Elsevier via the DOI in this record Data accessibility: All data supporting this study are openly available from the University of Southampton repository at http://dx.doi.org/10.5258/SOTON/381135.Electromagnetic vibration energy harvesters including magnetically levitated devices where opposing magnets are used to form the spring have been well documented. The strength of the magnets naturally has a large influence on the dynamic characteristics and output power of such harvesters. However, it can be affected by ambient temperatures which vary from applications to applications. This paper presents investigation into the performance of a magnetically levitated electromagnetic energy harvester under various ambient temperatures. Parameters investigated include magnetic flux density, resonant frequency, damping ratio, open circuit output voltage, velocity of the relative motion and the load resistance. Both simulation and experimental results show that these properties vary with ambient temperatures. The magnetic flux density reduces as the temperature increases which results in lower resonant frequency, lower relative velocity, lower open circuit output voltage and higher damping ratio. Varying resonant frequencies with temperature can lead to harvesters being de-tuned from the target vibration frequency. Decreasing magnetic field strength and increased damping ratios will also reduce output power even if the harvester's resonant frequency still matches the environmental vibration frequency. The power transferred to the electrical load will be reduced due to the variation in the optimal load resistance with temperature. This means the harvester is no longer matched to achieve the maximum harvested power. The specified maximum operating temperature of the magnets was found to lead to partial demagnetisation. When cycling from room to the maximum specified temperature, the magnetic field was initially found to fall but remained constant thereafter. Harvesters were found to operate beyond the specified maximum operating temperature of the magnet, but suffer from a reduced magnetic strength.Engineering and Physical Sciences Research Council (EPSRC
Regular and chaotic vibration in a piezoelectric energy harvester
We examine regular and chaotic responses of a vibrational energy harvester composed of a vertical beam and a tip mass. The beam is excited horizontally by a harmonic inertial force while mechanical vibrational energy is converted to electrical power through a piezoelectric patch. The mechanical resonator can be described by single or double well potentials depending on the gravity force from the tip mass. By changing the tip mass we examine bifurcations from single well oscillations, to regular and chaotic vibrations between the potential wells. The appearance of chaotic responses in the energy harvesting system is illustrated by the bifurcation diagram, the corresponding Fourier spectra, the phase portraits, and is confirmed by the 0–1 test. The appearance of chaotic vibrations reduces the level of harvested energy
Rectifying the output of vibrational piezoelectric energy harvester using quantum dots
Piezoelectric energy harvester scavenges mechanical vibrations and generates electricity. Researchers have strived to optimize the electromechanical structures and to design necessary external power management circuits, aiming to deliver high power and rectified outputs ready for serving as batteries. Complex deformation of the mechanical structure results in charges with opposite polarities appearing on same surface, leading to current loss in the attached metal electrode. External power management circuits such as rectifiers comprise diodes that consume power and have undesirable forward bias. To address the above issues, we devise a novel integrated piezoelectric energy harvesting device that is structured by stacking a layer of quantum dots (QDs) and a layer of piezoelectric material. We find that the QD can rectify electrical charges generated from the piezoelectric material because of its adaptable conductance to the electrochemical potentials of both sides of the QDs layer, so that electrical current causing energy loss on the same surface of the piezoelectric material can be minimized. The QDs layer has the potential to replace external rectification circuits providing a much more compact and less power-consumption solution
A Flexible 2.45-GHz Power Harvesting Wristband with Net System Output from -24.3 dBm of RF Power
This is the final version. Available from IEEE via the DOI in this recordThis paper presents a flexible 2.45-GHz wireless power harvesting wristband that generates a net dc output from a -24.3-dBm RF input. This is the lowest reported system sensitivity for systems comprising a rectenna and impedance-matching power management. A complete system has been implemented comprising: a fabric antenna, a rectifier on rigid substrate, a contactless electrical connection between rigid and flexible subsystems, and power electronics impedance matching. Various fabric and flexible materials are electrically characterized at 2.45 GHz using the two-line and the T-resonator methods. Selected materials are used to design an all-textile antenna, which demonstrates a radiation efficiency above 62% on a phantom irrespective of location, and a stable radiation pattern. The rectifier, designed on a rigid substrate, shows a best-in-class efficiency of 33.6% at -20 dBm. A reliable, efficient, and wideband contactless connection between the fabric antenna and the rectifier is created using broadside-coupled microstrip lines, with an insertion loss below 1 dB from 1.8 to over 10 GHz. A self-powered boost converter with a quiescent current of 150 nA matches the rectenna output with a matching efficiency above 95%. The maximum end-to-end efficiency is 28.7% at -7 dBm. The wristband harvester demonstrates net positive energy harvesting from -24.3 dBm, a 7.3-dB improvement on the state of the art.Engineering and Physical Sciences Research Council (EPSRC
Reverse electrowetting as a new approach to high-power energy harvesting
Over the last decade electrical batteries have emerged as a critical bottleneck for portable electronics development. High-power mechanical energy harvesting can potentially provide a valuable alternative to the use of batteries, but, until now, a suitable mechanical-to-electrical energy conversion technology did not exist. Here we describe a novel mechanical-to-electrical energy conversion method based on the reverse electrowetting phenomenon. Electrical energy generation is achieved through the interaction of arrays of moving microscopic liquid droplets with novel nanometer-thick multilayer dielectric films. Advantages of this process include the production of high power densities, up to 103 W m−2; the ability to directly utilize a very broad range of mechanical forces and displacements; and the ability to directly output a broad range of currents and voltages, from several volts to tens of volts. These advantages make this method uniquely suited for high-power energy harvesting from a wide variety of environmental mechanical energy sources
- …
