6 research outputs found

    The correlation between leaf-surface and leaf-tissue secondary metabolites: a case study with pyrrolizidine alkaloids in Jacobaea hybrid plants

    No full text
    Introduction: Usually whole plant or whole leaf extracts are analyzed to study the chemical ecology of insect-plant interactions. For herbivore species the contact with the leaf surface enables them to estimate the quality of the plant. The relationship between the leaf-surface and leaf-tissue secondary metabolites (SMs) could offer important new insights in insect-plant interactions mediated by SMs. Pyrrolizidine alkaloids (PAs), typical defense chemicals in Jacobaea species, are repellent for generalist herbivores but are attractive to specialists. Objectives: Explore whether the PAs on the leaf surface are a reliable representation of the PAs in the leaf tissue in PA-containing plants. Method: The concentration of individual PAs present on the leaf surface and in the corresponding leaf tissue from 37 genotypes (one plant from each genotype) of an F2 generation of a cross between Jacobaea vulgaris and Jacobaea aquatica was measured by high performance liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS). PAs were removed from the leaf surface by extraction with a slightly acidic aqueous solution. Results: The total amount of PAs present on the surface of the leaves was only 0.015% (range 0.001–0.163%) of the total amount present in the leaf tissue. Most PAs present in the leaf tissue were also found on the surface, except for jaconine, dehydrojaconine, dehydrojacoline and usaramine N-oxide. Positive correlations between leaf-surface and leaf-tissue concentrations were found for most of the jacobine-like and otosenine-like PAs, but correlations for total PA, senecionine- and erucifoline-like PAs were not significant. Conclusion: These results indicate that PA variation on the leaf surface only partially reflects the PA variation in the leaf tissue. Because most herbivores are affected in a different manner by individual PAs, this result means that the leaf surface does not give a reliable estimate of plant quality to herbivores

    Mass Spectrometry Screening Reveals Peptides Modulated Differentially in the Medial Prefrontal Cortex of Rats with Disparate Initial Sensitivity to Cocaine

    No full text
    To better understand why certain individuals are more vulnerable to cocaine abuse and addiction, we identify peptide markers associated with individual variation in sensitivity to the behavioral effects of cocaine. Previous studies in rats show that low, compared to high, cocaine responders are more sensitive to cocaine-induced behavioral plasticity (sensitization), exhibit enhanced conditioning to cocaine’s rewarding effects, and are more motivated to self administer cocaine. In the current study, we combine matrix-assisted laser desorption/ionization mass spectrometry with multivariate statistical methods to analyze tissue extracts from rat dorsal striatum, nucleus accumbens, and medial prefrontal cortex (mPFC) to examine trends in peptide changes that coincide with behavioral phenotype. Peptide profiles of these three regions from individual animals were characterized via mass spectrometry. Resulting mass peaks that were statistically different between these groups were identified using principal component analysis. The mass peaks were then identified in pooled samples via multistage liquid chromatography mass spectrometry. A total of 74 peptides from 28 proteins were sequenced from defined brain regions. Statistically significant changes in peak intensities for seven peptides were found in the mPFC of rats given a single injection of 10 mg/kg cocaine, with low cocaine responders showing ∼2-fold increase in peak intensities for the acetylated N terminus peptides of stathmin and Hint 1, as well as truncated ATP synthase. These results suggest that distinct peptide profiles in the mPFC are associated with individuals that exhibit reduced sensitivity to the behavioral effects of cocaine
    corecore