22 research outputs found

    Chemical composition, antinociceptive and anti-inflammatory effects in rodents of the essential oil of Peperomia serpens (Sw.) Loud

    Get PDF
    AbstractEthnopharmacological relevancePeperomia serpens (Piperaceae), popularly known as “carrapatinho”, is an epiphyte herbaceous liana grown wild on different host trees in the Amazon rainforest. Its leaves are largely used in Brazilian folk medicine to treat inflammation, pain and asthma.Aim of the studyThis study investigated the effects of essential oil of Peperomia serpens (EOPs) in standard rodent models of pain and inflammation.Materials and methodsThe antinociceptive activity was evaluated using chemical (acetic acid and formalin) and thermal (hot plate) models of nociception in mice whereas the anti-inflammatory activity was evaluated by carrageenan- and dextran-induced paw edema tests in rats croton oil-induced ear edema, as well as cell migration, rolling and adhesion induced by carrageenan in mice. Additionally, phytochemical analysis of the EOPs has been also performed.ResultsChemical composition of the EOPs was analyzed by gas chromatography and mass spectrometry (GC/MS). Twenty-four compounds, representing 89.6% of total oil, were identified. (E)-Nerolidol (38.0%), ledol (27.1%), α-humulene (11.5%), (E)-caryophyllene (4.0%) and α-eudesmol (2.7%) were found to be the major constituents of the oil. Oral pretreatment with EOPs (62.5–500mg/kg) significantly reduced the writhing number evoked by acetic acid injection, with an ED50 value of 188.8mg/kg that was used thereafter in all tests. EOPs had no significant effect on hot plate test but reduced the licking time in both phases of the formalin test, an effect that was not significantly altered by naloxone (0.4mg/kg, s.c.). EOPs inhibited the edema formation induced by carrageenan and dextran in rats. In mice, EOPs inhibited the edema formation by croton oil as well as the leukocyte and neutrophil migration, the rolling and the adhesion of leukocytes.ConclusionsThese data show for the first time that EOPs has a significant and peripheral antinociceptive effect that seems unrelated to interaction with the opioid system. EOPs also displays a significant anti-inflammatory effect in acute inflammation models. This effect seems to be related to components which inhibit the production of several inflammatory mediators. These results support the widespread use of Peperomia serpens in popular medicine to treat inflammation and pain

    Fever induction pathways: evidence from responses to systemic or local cytokine formation

    No full text
    The immune and central nervous systems are functionally connected and interacting. The concept that the immune signaling to the brain which induces fever during infection and inflammation is mediated by circulating cytokines has been traditionally accepted. Administration of bacterial lipopolysaccharide (LPS) induces the appearance of a so-termed "cytokine cascade" in the circulation more or less concomitantly to the developing febrile response. Also, LPS-like fever can be induced by systemic administration of key cytokines (IL-1ß, TNF-alpha, and others). However, anti-cytokine strategies against IL-1ß or TNF-alpha along with systemic injections of LPS frequently lead to attenuation of the later stages of the febrile response but not of the initial phase of fever, indicating that cytokines are rather involved in the maintenance than in the early induction of fever. Within the last years experimental evidence has accumulated indicating the existence of neural transport pathways of immune signals to the brain. Because subdiaphragmatic vagotomy prevents or attenuates fever in response to intraperitoneal or intravenous injections of LPS, a role for vagal afferent nerve fibers in fever induction has been proposed. Also other sensory nerves may participate in the manifestation of febrile responses under certain experimental conditions. Thus, injection of a small dose of LPS into an artificial subcutaneous chamber results in fever and formation of cytokines within the inflamed tissue around the site of injection. This febrile response can be blocked in part by injection of a local anesthetic into the subcutaneous chamber, indicating a participation of cutaneous afferent nerve signals in the manifestation of fever in this model. In conclusion, humoral signals and an inflammatory stimulation of afferent sensory nerves can participate in the generation and maintenance of a febrile response

    Enhanced production of elastase by Bacillus licheniformis ZJUEL31410: optimization of cultivation conditions using response surface methodology

    No full text
    Sequential methodology based on the application of three types of experimental designs was used to optimize the fermentation conditions for elastase production from mutant strain ZJUEL31410 of Bacillus licheniformis in shaking flask cultures. The optimal cultivation conditions stimulating the maximal elastase production consist of 220 r/min shaking speed, 25 h fermentation time, 5% (v/v) inoculums volume, 25 ml medium volume in 250 ml Erlenmeyer flask and 18 h seed age. Under the optimized conditions, the predicted maximal elastase activity was 495 U/ml. The application of response surface methodology resulted in a significant enhancement in elastase production. The effects of other factors such as elastin and the growth factor (corn steep flour) on elastase production and cell growth were also investigated in the current study. The elastin had no significant effect on enzyme-improved production. It is still not clear whether the elastin plays a role as a nitrogen source or not. Corn steep flour was verified to be the best and required factor for elastase production and cell growth by Bacillus licheniformis ZJUEL31410
    corecore