35,027 research outputs found
Coupled scalar fields Oscillons and Breathers in some Lorentz Violating Scenarios
In this work we discuss the impact of the breaking of the Lorentz symmetry on
the usual oscillons, the so-called flat-top oscillons, and the breathers. Our
analysis is performed by using a Lorentz violation scenario rigorously derived
in the literature. We show that the Lorentz violation is responsible for the
origin of a kind of deformation of the configuration, where the field
configuration becomes oscillatory in a localized region near its maximum value.
Furthermore, we show that the Lorentz breaking symmetry produces a displacement
of the oscillon along the spatial direction, the same feature is present in the
case of breathers. We also show that the effect of a Lorentz violation in the
flat-top oscillon solution is responsible by the shrinking of the flat-top.
Furthermore, we find analytically the outgoing radiation, this result indicates
that the amplitude of the outgoing radiation is controlled by the Lorentz
breaking parameter, in such away that this oscillon becomes more unstable than
its symmetric counterpart, however, it still has a long living nature
On the study of oscillons in scalar field theories: A new approach
In this work we study configurations in one-dimensional scalar field theory,
which are time-dependent, localized in space and extremely long-lived called
oscillons. It is investigated how the action of changing the minimum value of
the field configuration representing the oscillon affects its behavior. We find
that one of the consequences of this procedure, is the appearance of a pair of
oscillon-like structures presenting different amplitudes and frequencies of
oscillation. We also compare our analytical results to numerical ones, showing
excellent agreement
A Flexible Implementation of a Matrix Laurent Series-Based 16-Point Fast Fourier and Hartley Transforms
This paper describes a flexible architecture for implementing a new fast
computation of the discrete Fourier and Hartley transforms, which is based on a
matrix Laurent series. The device calculates the transforms based on a single
bit selection operator. The hardware structure and synthesis are presented,
which handled a 16-point fast transform in 65 nsec, with a Xilinx SPARTAN 3E
device.Comment: 4 pages, 4 figures. IEEE VI Southern Programmable Logic Conference
201
Information-Entropic Measure of Energy-Degenerate Kinks in Two-Field Models
We investigate the existence and properties of kink-like solitons in a class
of models with two interacting scalar fields. In particular, we focus on models
that display both double and single-kink solutions, treatable analytically
using the Bogomol'nyi--Prasad--Sommerfield bound (BPS). Such models are of
interest in applications that include Skyrmions and various
superstring-motivated theories. Exploring a region of parameter space where the
energy for very different spatially-bound configurations is degenerate, we show
that a newly-proposed momentum-space entropic measure called Configurational
Entropy (CE) can distinguish between such energy-degenerate spatial profiles.
This information-theoretic measure of spatial complexity provides a
complementary perspective to situations where strictly energy-based arguments
are inconclusive
- …