30,056 research outputs found

    Evidence for a Very Large-Scale Fractal Structure in the Universe from Cobe Measurements

    Get PDF
    In this work, we analyse the temperature fluctuations of the cosmic microwave background radiation observed by COBE and show that the distribution can be fitted by a fractal distribution with a fractal dimension D=1.43±0.07 D= 1.43 \pm 0.07 . This value is in close agreement with the fractal dimension obtained by Coleman and Pietronero (1992) and Luo and Schramm (1992) from galaxy-galaxy and cluster-cluster correlations up to ∼100h−1Mpc \sim 100 h^{-1} Mpc. The fact that the observed temperature fluctuations correspond to scales much larger than 100h−1Mpc 100 h^{-1} Mpc and are signatures of the primordial density fluctuations at the recombination layer suggests that the structure of the matter at the early universe was already fractal and thus non-homogeneous on those scales. This result may have important consequences for the theoretical framework that describes the universe.Comment: 11 pages, postscript file, 2 figures available upon request. To appear in ApJ Letter

    Noether symmetry for non-minimally coupled fermion fields

    Full text link
    A cosmological model where a fermion field is non-minimally coupled with the gravitational field is studied. By applying Noether symmetry the possible functions for the potential density of the fermion field and for the coupling are determined. Cosmological solutions are found showing that the non-minimally coupled fermion field behaves as an inflaton describing an accelerated inflationary scenario, whereas the minimally coupled fermion field describes a decelerated period being identified as dark matter.Comment: Revised version accepted for publication in Classical and Quantum Gravit

    Cosmological scenarios from multiquintessence

    Full text link
    In this work we derive and analyse cosmological scenarios coming from multi-component scalar field models. We consider a direct sum of a sine-Gordon with a Z2 model, and also a combination of those with a BNRT model. Moreover, we work with a modified version of the BNRT model, which breaks the Z2 x Z2 symmetry of the original BNRT potential, coupled with the sine-Gordon and with the standard Z2 models. We show that our approach can be straightforwardly elevated to NN fields. All the computations are made analytically and some parameters restriction is put forward in order to get in touch with complete and realistic cosmological scenarios
    • …
    corecore