13 research outputs found

    J Clin Invest

    Get PDF
    Arterial cardiovascular events are the leading cause of death in patients with JAK2V617F myeloproliferative neoplasms (MPN). However, their mechanisms are poorly understood. The high prevalence of myocardial infarction without significant coronary stenosis or atherosclerosis in patients with MPN suggests that vascular function is altered. Consequences of JAK2V617F mutation on vascular reactivity are unknown. We observe here increased responses to vasoconstrictors in arteries from Jak2V617F mice, resulting from disturbed endothelial nitric oxide pathway and increased endothelial oxidative stress. This response was reproduced in wild-type mice by circulating microvesicles isolated from patients carrying JAK2V617F and by erythrocyte-derived microvesicles from transgenic mice. Microvesicles of other cellular origins had no effect. This effect was observed ex vivo on isolated aortas, but also in vivo on femoral arteries. Proteomic analysis of microvesicles derived from JAK2V617F erythrocytes identified increased expression of myeloperoxidase as the likely mechanism accounting for microvesicles effect. Myeloperoxidase inhibition in microvesicles derived from JAK2V617F erythrocytes supressed their effect on oxidative stress. Antioxidants, such as simvastatin and N-acetyl-cysteine, improved arterial dysfunction in Jak2V617F mice. In conclusion, JAK2V617F MPN are characterized by exacerbated vasoconstrictor responses resulting from increased endothelial oxidative stress caused by circulating erythrocyte-derived microvesicles. Simvastatin appears as promising therapeutic strategy in this setting

    Exhaustion in Myeloid Lineage and Very Early Defect in HSPC Pool: An Embryonic Origin of Fanconi Haematological Disorders

    No full text
    57th Annual Meeting of the American-Society-of-Hematology, Orlando, FL, DEC 05-08, 2015International audienceno abstrac

    Monoclonal antibody 1.6.1 against human MPL receptor allows HSC enrichment of CB and BM CD34(+)CD38(-) populations

    No full text
    International audienceThrombopoietin (TPO) and its receptor Mpl (CD110) play a crucial role in the regulation of hematopoietic stem cells (HSCs). Functional study of Mpl-expressing HSCs has, however, been hampered by the lack of efficient monoclonal antibodies, explaining the very few data available on Mpl(+) HSCs during human embryonic development and after birth. Investigating the main monoclonal antibodies used so far to sort CD110(+) cells from cord blood (CB) and adult bone marrow (BM), we found that only the recent monoclonal antibody 1.6.1 engineered by Immunex Corporation was specific. Using in vitro functional assays, we found that this antibody can be used to sort a CD34(+)CD38(-)CD110(+) population enriched in hematopoietic progenitor stem cells, both in CB and in adult BM. In vivo injection into NSG mice further indicated that the CB CD34(+)CD38(-)CD110(+) population is highly enriched in HSCs compared with both CD34(+)CD38(-)CD110(-) and CD34(+)CD38(-) populations. Together our results validate MAb1.6.1 as an important tool, which has so far been lacking, in the HSC field

    Dorso-ventral contributions in the formation of the embryonic aorta and the control of aortic hematopoiesis

    No full text
    International audienceThe embryonic dorsal aorta plays a pivotal role in the production of the first hematopoietic stem cells (HSCs), the founders of the adult hematopoietic system. HSC production is polarized by being restricted to the aortic floor where a specialized subset of endothelial cells (ECs) endowed with hemogenic properties undergo an endothelial-to-hematopoietic production resulting in the formation of the intra-aortic hematopoietic clusters. This production is tightly time- and space-controlled with the transcription factor Runx1 playing a key role in this process and the surrounding tissues controlling the aortic shape and fate. In this paper, we shall review (a) how hemogenic ECs differentiate from the mesoderm, (b) how the different aortic components assemble coordinately to establish the dorso-ventral polarity, and (c) how this results in the initiation of Runx1 expression in hemogenic ECs and the initiation of the hematopoietic program. These observations should elucidate the first steps in HSC commitment and help in developing techniques to manipulate adult HSCs

    Thrombopoietin-Increased DNA-PK-Dependent DNA Repair Limits Hematopoietic STEM and Progenitor CELL Mutagenesis in Response to Irradiation

    No full text
    54th Annual Meeting and Exposition of the American-Society-of-Hematology (ASH), Atlanta, GA, DEC 08-11, 2012International audienceno abstrac

    Endoglin expression level discriminates long-term hematopoietic from short-term clonogenic progenitor cells in the aorta

    No full text
    International audienceCD105 is an auxiliary receptor for the transforming growth factor beta superfamily, highly expressed on proliferating endothelial cells and adult hematopoietic stem cells. Because CD105 mRNA expression was reported in the developing aortic region, we further characterized its expression profile in the aorta and examined the hematopoietic potential of CD105(+) cells. Aortic endothelial cells, intra-aortic hematopoietic cell clusters and the purified cell fraction enriched in progenitor/hematopoietic stem cell activity expressed CD105. Aortic hematopoietic short-term clonogenic progenitors were highly enriched in the CD105(intermediate) population whereas more immature long-term progenitors/hematopoietic stem cells are contained within the CD105(high) population. This places CD105 on the short list of molecules discriminating short-term versus long-term progenitors in the aorta. Furthermore, decreasing transforming growth factor beta signaling increases the number of clonogenic progenitors. This suggests that CD105 expression level defines a hierarchy among aortic hematopoietic cells allowing purification of clonogenic versus more immature hematopoietic progenitors, and that the transforming growth factor beta pathway plays a critical role in this process

    Studies in an Early Development Window Unveils a Severe HSC Defect in both Murine and Human Fanconi Anemia

    No full text
    International audienceFanconi anemia (FA) causes bone marrow failure early during childhood, and recent studies indicate that a hematopoietic defect could begin in utero. We performed a unique kinetics study of hematopoiesis in Fancg−/− mouse embryos, between the early embryonic day 11.5 (E11.5) to E12.5 developmental window (when the highest level of hematopoietic stem cells [HSC] amplification takes place) and E14.5. This study reveals a deep HSC defect with exhaustion of proliferative and self-renewal capacities very early during development, together with severe FA clinical and biological manifestations, which are mitigated at E14.5 due to compensatory mechanisms that help to ensure survival of Fancg−/− embryos. It also reports that a deep HSC defect is also observed during human FA development, and that human FA fetal liver (FL) HSCs present a transcriptome profile similar to that of mouse E12.5 Fancg−/− FL HSCs. Altogether, our results highlight that early mouse FL could represent a good alternative model for studying Fanconi pathology

    Endothelial Epas1 Deficiency Is Sufficient To Promote Parietal Epithelial Cell Activation and FSGS in Experimental Hypertension

    No full text
    International audienceFSGS, the most common primary glomerular disorder causing ESRD, is a complex disease that is only partially understood. Progressive sclerosis is a hallmark of FSGS, and genetic tracing studies have shown that parietal epithelial cells participate in the formation of sclerotic lesions. The loss of podocytes triggers a focal activation of parietal epithelial cells, which subsequently form cellular adhesions with the capillary tuft. However, in the absence of intrinsic podocyte alterations, the origin of the pathogenic signal that triggers parietal epithelial cell recruitment remains elusive. In this study, investigation of the role of the endothelial PAS domain-containing protein 1 (EPAS1), a regulatory a subunit of the hypoxia-inducible factor complex, during angiotensin II–induced hypertensive nephrop-athy provided novel insights into FSGS pathogenesis in the absence of a primary podocyte abnormality. We infused angiotensin II into endothelial-selective Epas1 knockout mice and their littermate controls. Although the groups presented with identical high BP, endothelial-specific Epas1 gene deletion accentuated albuminuria with severe podocyte lesions and recruitment of pathogenic parietal glomerular epithelial cells. These lesions and dysfunction of the glomerular filtration barrier were associated with FSGS in endothelial Epas1-deficient mice only. These results indicate that endothelial EPAS1 has a global protective role during glomerular hypertensive injuries without influencing the hypertensive effect of angiotensin II. Furthermore, endothelial Epas1 gene deficiency promotes FSGS in this model of hypertension, providing proof of principle that endothelial-derived signaling can trigger FSGS. These findings illustrate the potential importance of the EPAS1 endothelial transcription factor in secondary FSGS
    corecore