14,994 research outputs found

    Dangling-bond spin relaxation and magnetic 1/f noise from the amorphous-semiconductor/oxide interface: Theory

    Full text link
    We propose a model for magnetic noise based on spin-flips (not electron-trapping) of paramagnetic dangling-bonds at the amorphous-semiconductor/oxide interface. A wide distribution of spin-flip times is derived from the single-phonon cross-relaxation mechanism for a dangling-bond interacting with the tunneling two-level systems of the amorphous interface. The temperature and frequency dependence is sensitive to three energy scales: The dangling-bond spin Zeeman energy delta, as well as the minimum (E_min) and maximum (E_max) values for the energy splittings of the tunneling two-level systems. We compare and fit our model parameters to a recent experiment probing spin coherence of antimony donors implanted in nuclear-spin-free silicon [T. Schenkel {\it et al.}, Appl. Phys. Lett. 88, 112101 (2006)], and conclude that a dangling-bond area density of the order of 10^{14}cm^{-2} is consistent with the data. This enables the prediction of single spin qubit coherence times as a function of the distance from the interface and the dangling-bond area density in a real device structure. We apply our theory to calculations of magnetic flux noise affecting SQUID devices due to their Si/SiO_2 substrate. Our explicit estimates of flux noise in SQUIDs lead to a noise spectral density of the order of 10^{-12}Phi_{0}^{2} {Hz}^{-1} at f=1Hz. This value might explain the origin of flux noise in some SQUID devices. Finally, we consider the suppression of these effects using surface passivation with hydrogen, and the residual nuclear-spin noise resulting from a perfect silicon-hydride surface.Comment: Final published versio

    Site-dependent hydrogenation on graphdiyne

    Full text link
    Graphene is one of the most important materials in science today due to its unique and remarkable electronic, thermal and mechanical properties. However in its pristine state, graphene is a gapless semiconductor, what limits its use in transistor electronics. In part due to the revolution created by graphene in materials science, there is a renewed interest in other possible graphene-like two-dimensional structures. Examples of these structures are graphynes and graphdiynes, which are two-dimensional structures, composed of carbon atoms in sp2 and sp-hybridized states. Graphdiynes (benzenoid rings connecting two acetylenic groups) were recently synthesized and some of them are intrinsically nonzero gap systems. These systems can be easily hydrogenated and the relative level of hydrogenation can be used to tune the band gap values. We have investigated, using fully reactive molecular dynamics (ReaxFF), the structural and dynamics aspects of the hydrogenation mechanisms of graphdiyne membranes. Our results showed that the hydrogen bindings have different atom incorporation rates and that the hydrogenation patterns change in time in a very complex way. The formation of correlated domains reported to hydrogenated graphene is no longer observed in graphdiyne cases.Comment: Submitted to Carbo

    Exponential Distributions in a Mechanical Model for Earthquakes

    Full text link
    We study statistical distributions in a mechanical model for an earthquake fault introduced by Burridge and Knopoff [R. Burridge and L. Knopoff, {\sl Bull. Seismol. Soc. Am.} {\bf 57}, 341 (1967)]. Our investigations on the size (moment), time duration and number of blocks involved in an event show that exponential distributions are found in a given range of the paramenter space. This occurs when the two kinds of springs present in the model have the same, or approximately the same, value for the elastic constants. Exponential distributions have also been seen recently in an experimental system to model earthquake-like dynamics [M. A. Rubio and J. Galeano, {\sl Phys. Rev. E} {\bf 50}, 1000 (1994)].Comment: 11 pages, uuencoded (submitted to Phys. Rev. E
    • …
    corecore