3,984 research outputs found

    Protostellar mergers in protoclusters and the origin of ultra-luminous X-ray sources

    Full text link
    I suggest that stellar coalescence in mid-size protoclusters (M ~ 10^{3.5} - 10^{4.5} M_sun) is a possible scenario for the formation of ultra-luminous X-ray sources (ULXs). More massive super-star-clusters are not needed, since the most likely ULX mass range is only ~ 30--200 M_sun; in fact, they are very rarely found at or very near ULX positions. Protostellar envelopes and gas accretion favour captures and mergers in dense cores of embedded clusters. Moreover, protoclusters with masses ~ 10^{3.5} - 10^{4.5} M_sun are likely to disperse quickly into loose OB associations, where most ULXs are found. Sufficiently high protostellar density may be achieved when clustered star formation is triggered by galaxy collisions and mergers. Low metallicity may then be necessary to ensure that a large fraction of the stellar mass ends up in a black hole. In this scenario, most ULXs are naturally explained as the extreme end of the high-mass X-ray binary population.Comment: 4 pages, to appear in the proceedings of the IAU Symposium 230, "Populations of High Energy Sources in Galaxies", Dublin, 15-19 Aug 200

    Soft-excess in ULX spectra: disc emission or wind absorption?

    Get PDF
    We assess the claim that Ultra-luminous X-ray sources (ULXs) host intermediate-mass black holes (BH) by comparing the cool disc-blackbody model with a range of other models, namelly a more complex physical model based on a power-law component slightly modified at various energies by smeared emission/absorption lines from highly-ionized gas. Our main conclusion is that the presence of a soft excess, or a soft deficit, depends entirely on the energy range to which we choose to fit the ``true'' power-law continuum; hence, we argue that those components should not be taken as evidence for accretion disc emission, nor used to infer BH masses. We speculate that bright ULXs could be in a spectral state similar to (or an extension of) the steep-power-law state of Galactic BH candidates, in which the disc is completely comptonized and not directly detectable, and the power-law emission may be modified by the surrounding, fast-moving, ionized gas.Comment: To appear in the proceedings of "The Multicoloured Landscape of Compact Objects and their Explosive Progenitors: Theory vs. Observations", Cefalu', Sicily, June 11-24, 2006 (AIP). Compilation needs specific AIP .clo, .cls, .sty and .tex files (included along with the paper .tex file and figures

    Optical spectroscopy of GX 339-4 during the high-soft and low-hard states - I

    Get PDF
    We carried out spectroscopic observations of the candidate black hole binary GX 339−4 during its low–hard and high–soft X-ray states. We have found that the spectrum is dominated by emission lines of neutral elements with asymmetric, round-topped profiles in the low–hard state. In the high–soft state, however, the emission lines from both neutral and ionized elements have unambiguously resolved double-peaked profiles. The detection of double-peaked emission lines in the high–soft state, with a larger peak separation for higher ionization lines, indicates the presence of an irradiatively heated accretion disc. The round-topped lines in the low–hard state are probably caused by a dense matter outflow from an inflated non-Keplerian accretion disc. Our data do not show velocity modulations of the line centres caused by the orbital motion of the compact object, neither do the line basewidths show substantial variations in each observational epoch. There are no detectable absorption lines from the companion star. All these features are consistent with those of a system with a low-mass companion star and low orbital inclination

    How rapidly do neutron stars spin at birth? Constaints from archival X-ray observations of extragalactic supernovae

    Get PDF
    Traditionally, studies aimed at inferring the distribution of birth periods of neutron stars are based on radio surveys. Here we propose an independent method to constrain the pulsar spin periods at birth based on their X-ray luminosities. In particular, the observed luminosity distribution of supernovae (SNe) poses a constraint on the initial rotational energy of the embedded pulsars, via the correlation found for radio pulsars, and under the assumption that this relation continues to hold beyond the observed range. We have extracted X-ray luminosities (or limits) for a large sample of historical SNe observed with Chandra, XMM and Swift, which have been firmly classified as core-collapse SNe. We have then compared these observational limits with the results of Monte Carlo simulations of the pulsar X-ray luminosity distribution for a range of values of the birth parameters. We find that a pulsar population dominated by millisecond periods at birth is ruled out by the data

    A study of the new X-ray transient RXTE J2123-058 during its post-outburst state

    Get PDF
    We carried out I, R, V and B photometric observations of the neutron star X-ray binary RXTE J2123−058 shortly after the end of the X-ray outburst in mid-1998. We adopt the low-mass binary model to interpret our observations. After folding our data on the 0.24 821-d orbital period, and correcting for the steady brightness decline following the outburst, we observed sinusoidal oscillations with hints of ellipsoidal modulations which became progressively more evident. Our data also show that the decline in brightness was faster in the V band than in the R and I bands. This suggests both the cooling of an irradiation-heated secondary star and the fading of an accretion disc over the nights of our observations

    The molecular envelope of CRL 618: A new model based on Herschel/HIFI observations

    Full text link
    We study the physical properties and molecular excitation of the different warm gas components found in the protoplanetary nebula CRL 618. We revise our previous Herschel/HIFI observations, which consist of several 12CO and 13CO lines in the far-infrared/sub-mm band. These data have been re-analyzed in detail by improving calibration, the signal-to-noise-ratio, and baseline substraction. We identify the contributions of the different nebular components to the line profiles. We have used a spatio-kinematical model to better constrain the temperature, density, and kinematics of the molecular components probed by the improved CO observations. The 12CO and 13CO J=16-15, J=10-9, and J=6-5 transitions are detected in this source. The line profiles present a composite structure showing spectacular wings in some cases, which become dominant as the energy level increases. Our analysis of the high-energy CO emission with the already known low-energy J=2-1 and J=1-0 lines confirms that the high-velocity component, or fast bipolar outflow, is hotter than previously estimated with a typical temperature of ~300 K. This component may then be an example of a very recent acceleration of the gas by shocks that has not yet cooled down. We also find that the dense central core is characterized by a very low expansion velocity, ~5 km/s, and a strong velocity gradient. We conclude that this component is very likely to be the unaltered circumstellar layers that are lost in the last AGB phase, where the ejection velocity is particularly low. The physical properties of the other two nebular components, the diffuse halo and the double empty shell, more or less agrees with the estimations derived in previous models.Comment: Accepted for publication in Astronomy & Astrophysics. 8 pages, 3 figure

    International Evidence on Monetary Neutrality Under Broken Trend Stationary Models

    Get PDF
    We analyze the issue of the impact of multiple breaks on monetary neutrality results, using annual data on real output and monetary aggregates for Argentina (1884-1996), Australia (1870-1997), Brazil (1912-1995), Canada (1870-2001), Italy (1870-1997), Mexico (1932-2000), Sweeden (1871-1988), and the UK (1871-2000). In particular, we empirically verify, whether neutrality propositions remain addressable (and if so, whether they hold or not), when unit root tests are carried out allowing for multiple structural breaks in the long-run trend function of the variables. It is found that conclusions on neutrality are sensitive to the number of breaks allowed. In order to interpret the evidence for structural breaks, we utilize a notion of deterministic monetary neutrality, which naturally arises in the absence of permanent stochastic shocks to the variables. We utilize a resampling procedure based on the fact that changes in the trend function bias unit root tests towards a non-rejection. In particular, using a dynamic programming algorithm to obtain global minimizers of the RSS for locating breaks, we simulate the distribution of the t-statistic for the null hypothesis of a unit root, under the hypotheses that the true models are both a Trend Stationary (TS) model with up to four structural breaks, and a Difference-Stationary (DS) model, both estimated from the data. We then compare the position where the sample estimate of the t-statistic for testing a unit root lies relative to the empirical densities of the t-statistic, under both the estimated TS and DS models. We present evidence in favour of models in which the cycle fluctuates in a stationary way around a broken trend. In other words, the (unit root) permanent stochastic changes vanish, giving rise to stationary behaviour affected by infrequent structural breaks. This leads to interesting questions about the testing for monetary neutrality, and allows us to introduce the concept of deterministic monetary neutrality.Neutrality and Superneutrality of Money, Stationarity, Structural Breaks, Resampling Methods

    Mapping the circumstellar SiO maser emission in R Leo

    Full text link
    The study of the innermost circumstellar layers around AGB stars is crucial to understand how these envelopes are formed and evolve. The SiO maser emission occurs at a few stellar radii from the central star, providing direct information on the stellar pulsation and on the chemical and physical properties of these regions. Our data also shed light on several aspects of the SiO maser pumping theory that are not well understood yet. We aim to determine} the relative spatial distribution of the 43 GHz and 86 GHz SiO maser lines in the oxygen-rich evolved star R Leo. We have imaged with milliarcsecond resolution, by means of Very Long Baseline Interferometry, the 43 GHz (28SiO v=1, 2 J=1-0 and 29SiO v=0 J=1-0) and 86 GHz (28SiO v=1 J=2-1 and 29SiO v=0 J=2-1) masing regions. We confirm previous results obtained in other oxygen-rich envelopes. In particular, when comparing the 43 GHz emitting regions, the 28SiO v=2 transition is produced in an inner layer, closer to the central star. On the other hand, the 86 GHz line arises in a clearly farther shell. We have also mapped for the first time the 29SiO v=0 J=1-0 emission in R Leo. The already reported discrepancy between the observed distributions of the different maser lines and the theoretical predictions is also found in R Leo.Comment: accepted for publication in A&
    • 

    corecore