8,873 research outputs found

    Advanced ceramic material for high temperature turbine tip seals

    Get PDF
    Ceramic material systems are being considered for potential use as turbine blade tip gas path seals at temperatures up to 1370 1/4 C. Silicon carbide and silicon nitride structures were selected for study since an initial analysis of the problem gave these materials the greatest potential for development into a successful materials system. Segments of silicon nitride and silicon carbide materials over a range of densities, processed by various methods, a honeycomb structure of silicon nitride and ceramic blade tip inserts fabricated from both materials by hot pressing were tested singly and in combination. The evaluations included wear under simulated engine blade tip rub conditions, thermal stability, impact resistance, machinability, hot gas erosion and feasibility of fabrication into engine components. The silicon nitride honeycomb and low-density silicon carbide using a selected grain size distribution gave the most promising results as rub-tolerant shroud liners. Ceramic blade tip inserts made from hot-pressed silicon nitride gave excellent test results. Their behavior closely simulated metal tips. Wear was similar to that of metals but reduced by a factor of six

    Advanced ceramic material for high temperature turbine tip seals

    Get PDF
    Forty-one material systems were evaluated for potential use in turbine blade tip seal applications at 1370 C. Both ceramic blade tip inserts and abradable ceramic tip shoes were tested. Hot gas erosion, impact resistance, thermal stability, and dynamic rub performance were the criteria used in rating the various materials. Silicon carbide and silicon nitride were used, both as blade tips and abradables. The blade tip inserts were fabricated by hot pressing while low density and honeycomb abradables were sintered or reaction bonded

    Molecular hydrogen in the galaxy and galactic gamma rays

    Get PDF
    Recent surveys of 2.6 mm CO emission and 100 MeV gamma-radiation in the galactic plane reveal a striking correlation suggesting that both emissions may be primarily proportional to the line-of-sight column density of H2 in the inner galaxy. Both the gamma ray and CO data suggest a prominent ring or arm consisting of cool clouds of H2 at a galactocentric distance of approximately 5 kpc with a mean density of approximately 4 atoms/cu cm. The importance of H2 in understanding galactic gamma ray observations is also reflected in the correlation of galactic latitude distribution of gamma rays and dense dust clouds. A detailed calculation of the gamma ray flux distribution in the 0 deg to 180 deg range using the CO data to obtain the average distribution of molecular clouds in the galaxy shows that most of the enhancement in the inner galaxy is due to pion-decay radiation and the 5 kpc ring plays a major role. Detailed agreement with the gamma ray data is obtained with the additional inclusion of contributions from bremsstrahlung and Compton radiation of secondary electrons and Compton radiation from the intense radiation field near the galactic center

    Mean Escape Time in a System with Stochastic Volatility

    Get PDF
    We study the mean escape time in a market model with stochastic volatility. The process followed by the volatility is the Cox Ingersoll and Ross process which is widely used to model stock price fluctuations. The market model can be considered as a generalization of the Heston model, where the geometric Brownian motion is replaced by a random walk in the presence of a cubic nonlinearity. We investigate the statistical properties of the escape time of the returns, from a given interval, as a function of the three parameters of the model. We find that the noise can have a stabilizing effect on the system, as long as the global noise is not too high with respect to the effective potential barrier experienced by a fictitious Brownian particle. We compare the probability density function of the return escape times of the model with those obtained from real market data. We find that they fit very well.Comment: 9 pages, 9 figures, to be published in Phys. Rev.

    Some useful combinatorial formulae for bosonic operators

    Get PDF
    We give a general expression for the normally ordered form of a function F(w(a,a*)) where w is a function of boson annihilation and creation operators satisfying [a,a*]=1. The expectation value of this expression in a coherent state becomes an exact generating function of Feynman-type graphs associated with the zero-dimensional Quantum Field Theory defined by F(w). This enables one to enumerate explicitly the graphs of given order in the realm of combinatorially defined sequences. We give several examples of the use of this technique, including the applications to Kerr-type and superfluidity-type hamiltonians.Comment: 8 pages, 3 figures, 17 reference

    What determines auditory similarity? The effect of stimulus group and methodology.

    Get PDF
    Two experiments on the internal representation of auditory stimuli compared the pairwise and grouping methodologies as means of deriving similarity judgements. A total of 45 undergraduate students participated in each experiment, judging the similarity of short auditory stimuli, using one of the methodologies. The experiments support and extend Bonebright's (1996) findings, using a further 60 stimuli. Results from both methodologies highlight the importance of category information and acoustic features, such as root mean square (RMS) power and pitch, in similarity judgements. Results showed that the grouping task is a viable alternative to the pairwise task with N > 20 sounds whilst highlighting subtle differences, such as cluster tightness, between the different task results. The grouping task is more likely to yield category information as underlying similarity judgements

    Molecular Clouds in the Galactic Center Region: Carbon Monoxide Observations at 2.6 Millimeters

    Get PDF
    A preliminary CO emission line survey covering a strip at b = -2' from ℓ = 359°.7 to ℓ = 2°.8 is presented which shows a continuous band of emission connecting the region between Sgr A and Sgr B. A high-resolution map of the Sgr A cloud near the galactic center shows that there are at least two clouds centered within 3' of each other with a velocity difference of 35 km s^(-1). Measurement of the ^(13)C^(16)O and ^12)C^(18)O emission indicates isotopic abundances similar to those of the solar system

    Affine algebraic groups with periodic components

    Full text link
    A connected component of an affine algebraic group is called periodic if all its elements have finite order. We give a characterization of periodic components in terms of automorphisms with finite number of fixed points. It is also discussed which connected groups have finite extensions with periodic components. The results are applied to the study of the normalizer of a maximal torus in a simple algebraic group.Comment: 20 page
    corecore