39 research outputs found

    Olive tree, Olea europaea L., leaves as a bioindicator of atmospheric PCB contamination

    Get PDF
    Olive tree leaf samples were collected to investigate their possible use for biomonitoring of lipophilic toxic substances. The samples were analyzed for 28 polychlorinated biphenyls (PCB) congeners. Twelve congeners were detected in the samples. PCB-60, 77, 81, 89, 105, 114, and 153 were the most frequently detected congeners ranging from 32 % for PCB-52 to 97 % for PCB-81. Σ12PCBs concentration varied from below detection limit to 248 ng/g wet weight in the sampling area, while the mean congener concentrations ranged from 0.06 ng/g (PCB-128 + 167) to 64.2 ng/g wet weight (PCB-60). Constructed concentration maps showed that olive tree leaves can be employed for the estimation of spatial distrubution of these congener

    An exposure–risk assessment for potentially toxic elements in rice and bulgur

    Get PDF
    Rice and wheat are rich sources of essential elements. However, they may also accumulate potentially toxic elements (PTE). Bulgur, the popular alternative to rice in the eastern Mediterranean, is produced by processing wheat, during which PTE content may change. This study determined PTE concentrations in rice and bulgur collected from 50 participant households in the City of Izmir, Turkey, estimated ingestion exposure, and associated chronic-toxic and carcinogenic human health risks. Comparison of the determined concentrations to the available standard levels and the levels reported in the literature revealed that Cd, Co, and Pb in rice might be of concern. The estimated health risks of individual participants supported this result with exceedance of respective threshold or acceptable risk levels at the 95th percentile. Population risk estimates indicated that the proportion with higher than the threshold or acceptable risk is about 10%, 24%, and 12% for Cd, Co, and Pb in rice, respectively. Results of this study showed that health risks associated with PTE exposure through bulgur consumption are lower than those of rice, and below the threshold or acceptable risk levels

    A health risk assessment for exposure to trace metals via drinking water ingestion pathway

    Get PDF
    A health risk assessment was conducted for exposure to trace metals via drinking water ingestion pathway for Province of İzmir, Turkey. Concentrations of 11 trace metals were measured in drinking waters collected from 100 population weighted random sampling units (houses). The samples were analyzed in atomic absorption spectrometry for arsenic, and inductively coupled plasma-optical emission spectrometry for Be, Cd, Co, Cr, Cu, Mn, Ni, Pb, V, and Zn. Questionnaires were administered to a participant from each sampling unit to determine drinking water consumption related information and demographics. Exposure and risks were estimated for each individual by direct calculation, and for İzmir population by Monte Carlo simulation. Six trace metals (As, Cr, Cu, Mn, Ni, and Zn) were detected in >50% of the samples. Concentrations of As and Ni exceeded the corresponding standards in 20% and 58% of the samples, respectively. As a result, arsenic noncarcinogenic risks were higher than the level of concern for 19% of the population, whereas carcinogenic risks were >10-4 for 46%, and >10-6 for 90% of the population

    Seasonal variation in drinking water concentrations of disinfection by-products in IZMIR and associated human health risks

    Get PDF
    Seasonal variation in concentrations of two different disinfection by-product groups, trihalomethanes (THMs) and haloacetonitriles (HANs), was investigated in tap water samples collected from five sampling points (one groundwater and four surface water sources) in İzmir, Turkey. Estimates of previously published carcinogenic and non-carcinogenic risks through oral exposure to THMs were re-evaluated using a probabilistic approach that took the seasonal concentration variation into account. Chloroform, bromoform, dibromochloromethane and dichloroacetonitrile were the most frequently detected compounds. Among these, chloroform was detected with the highest concentrations ranging from 0.03 to 98.4 μg/L. In tap water, at the groundwater supplied sampling point, brominated species, bromoform and dibromoacetonitrile, were detected at the highest levels most probably due to bromide ion intrusion from seawater. The highest total THM and total HAN concentrations were detected in spring while the lowest in summer and fall. The annual average total THM concentration measured at one of the surface water supplied sampling points exceeded the USEPA's limit of 80 μg/L. While all non-carcinogenic risks due to exposure to THMs in İzmir drinking water were negligible, carcinogenic risk levels associated with bromodichloromethane and dibromochloromethane were higher than one in million

    Polycyclic and nitro musks in indoor air: A primary school classroom and a women's sport center

    Get PDF
    Indoor air gas and particulate-phase samples (PM2.5) were collected from a primary school classroom and a women's sport center because children are one of the sensitive population subgroups and women are frequent users of personal care products in addition to the high level of activity in this specific microenvironment. PM2.5 was collected with a Harvard impactor, and polyurethane foam was used for the gas phase. Samples were ultrasonically extracted, concentrated, and analyzed with a GC-MS. The mean gas-phase concentrations in the classroom ranged from 0.12 ± 0.2 ng/m3 for MK to 267 ± 56 ng/m3 for HHCB, while it was from 0.08 ± 0.10 ng/m3 for AHMI to 144 ± 61 ng/m3 for HHCB in the sports center. Particulate-phase average concentrations in the sports center ranged from 0.22 ± 0.11 ng/m3 for ATII to 1.34 ± 071 ng/m3 for AHTN, while it ranged from 0.05 ± 0.02 ng/m3 (musk xylene) to 2.50 ± 0.94 ng/m3 (HHCB) in the classroom. Exposure-risk assessment showed that inhalation route is most probably far less significant than the dermal route; however, it should be noted that the exposure duration covered in this study was not the larger fraction of the da

    Indoor air quality in chemical laboratories

    Get PDF
    Chemical laboratories are special microenvironments, in which many pollutants may be found because of the large range and number of chemicals that can be used, while concentrations of some specific ones may relatively be elevated due to high source strengths depending on the type and the number of experiments conducted and the number of people working in the laboratory. Laboratories can be considered as public places for the students whereas they are occupational microenvironments for their staff (technicians, specialists and teaching/research assistants). Hence, laboratory indoor air quality (IAQ) is of importance due to chronic, toxic and carcinogenic health risks for the staff in addition to possible acute effects for both staff and students. This chapter presents background information regarding pertinent indoor air pollutants, factors that determine their concentrations, indoor environmental comfort, a review of the literature on indoor environmental quality in chemical laboratories and measures of IAQ management

    Forecasting ambient air SO2 concentrations using artificial neural networks

    No full text
    An Artificial Neural Networks (ANNs) model is constructed to forecast SO 2 concentrations in Izmir air. The model uses meteorological variables (wind speed and temperature) and measured particulate matter concentrations as input variables. The correlation coefficient between observed and forecasted concentrations is 0.94 for the network that uses all three variables as input parameters. The root mean square error value of the model is 3.60 g/mt 3 . Considering the limited number of available input variables, model performances show that ANNs are a promising method of modeling to forecast ambient air SO 2 concentrations in Izmir

    An assessment of indoor air concentrations and health risks of volatile organic compounds in three primary schools

    No full text
    Concentrations of volatile organic compounds (VOCs), including formaldehyde, in classrooms, kindergartens, and outdoor playgrounds of three primary schools were measured in spring, winter, and fall terms in Izmir, Turkey. A health-risk assessment was conducted for odor detection, sensory irritation, chronic toxic effects, and cancer. Active sampling was applied for VOCs and formaldehyde on Tenax TA and DNPH tubes, respectively. VOCs were analyzed in a thermal desorption-GC-MS system. Formaldehyde analysis was performed using an HPLC instrument. Benzene, toluene, and formaldehyde were the most abundant compounds with 95th percentile indoor air concentrations of 29, 87, and 106μg/m3, respectively. Naphthalene and xylenes followed them with an order of magnitude lower concentrations. Two isomers of dichlorobenzene (1,3 and 1,4) were the other notable compounds. The concentrations were utilized to classify the indoor air pollutants with respect to potential health effects. In addition, carcinogenic and chronic toxic risks were estimated using Monte-Carlo simulation. Formaldehyde appears to be the most concerning pollutant with high chronic toxic and carcinogenic risk levels according to the health assessment followed by naphthalene, benzene, and toluene due to their chronic effects

    Henry's law constant, octanol-air partition coefficient and supercooled liquid vapor pressure of carbazole as a function of temperature: Application to gas/particle partitioning in the atmosphere

    Get PDF
    The Henry's law constant for carbazole was experimentally determined between 5 and 35°C using a gas-stripping technique. The following equation was obtained for dimensionless Henry's law constant (H′) versus temperature (T, K):lnH′=-3982(T,K)-1+1.01 Temperature-dependent octanol-air partition coefficients (KOA) and supercooled liquid vapor pressures (PL, Pa) of carbazole were also determined using the GC retention time method. The temperature dependence of KOA and PL were explained by the following:logKOA=4076/(T,K)-5. 65logPL(Pa)=-3948(T,K)-1+11.84 The gas and particle-phase carbazole concentrations measured previously in Chicago, IL in 1995 was used for gas/particle partitioning modeling. Octanol based absorptive partitioning model consistently underpredicted the gas/particle partition coefficients (K p) for all sampling periods. However, overall there was a good agreement between the measured Kp and soot-based model predictions

    Utilization of municipal plastic and wood waste in industrial manufacturing of wood plastic composites

    No full text
    In this study, Wood Plastic Composites (WPCs) were produced from post-consumer bulky wastes of recycled plastic and wood in order to minimize waste, decrease environmental effects of plastics, reserve natural resources, and support circular economy for sustainable production and consumption. Five different types of polypropylene (PP) or polyethylene (PE) based recycled plastics and wood obtained from urban household bulky wastes were used in the production of recycled WPC composites, r-WPCs. Virgin WPC (v-WPC) and r-WPC compounds were prepared with wood flour (WF) and maleic anhydride grafted compatibilizer (MAPP or MAPE) to evaluate the effect of recycled polymer type and compatibilizer on the mechanical properties. It was found that tensile strength properties of r-WPCs produced from recycled PP (r-PP) were higher than that of the r-WPCs produced from mixed polyolefins and recycled PE. r-WPCs containing anti-oxidants, UV stabilizers, and compatibilizer with different WF compositions were produced from only recycled garden fraction PP (PPFGF) to determine the optimum composition and processing temperature for pilot scale manufacturing of r-WPCs. Based on tensile, impact, flexural, and water sorption properties of r-WPC compounds with different formulations, the optimum conditions of r-WPC compounds for industrial manufacturing process were determined. Surface morphology of fractured surfaces as well as tensile, flexural and density results of r-WPC compounds revealed the enhancement effect of MAPP on interfacial adhesion in r-WPCs. r-WPC products (crates and table/chair legs) based on bulky wastes were produced using an injection molding process at industrial scale by using 30 wt% WF-filled r-WPC compound. This study demonstrated that r-WPC compounds from recycled bulky plastic and wood wastes can be used as a potential raw material in plastic as well as WPC industry, contributing to circular economy. Graphi
    corecore