19 research outputs found

    Structural and optical properties of Zn0.9 Mn0.1 O/ZnO core-shell nanowires designed by pulsed laser deposition

    Get PDF
    Partilhar documento na coleção da comunidade Laboratório Associado I3NCore-shell ZnO/ZnMnO nanowires on a-Al2O3 and GaN (buffer layer)/Si (111) substrates were fabricated by pulsed laser deposition using a Au catalyst. Two ZnO targets with a Mn content of 10% were sintered at 1150 and 550 °C in order to achieve the domination in them of paramagnetic MnO2 and ferromagnetic Mn2O3 phases, respectively. Cluster mechanism of laser ablation as a source of possible incorporation of secondary phases to the wire shell is discussed. Raman spectroscopy under excitation by an Ar+ laser revealed a broad peak related to the Mn-induced disorder and a redshift in the A1-LO phonon. Resonant Raman measurements revealed an increase in the multiphonon scattering caused by disorder in ZnO upon doping by Mn. Besides the UV emission, a vibronic green emission band assisted by a ∼ 71 meV LO phonon is also observed in the photoluminescence spectra. Core-shell structures with smooth shells show a high exciton to green band intensity ratio ( ∼ 10) even at room temperature. © 2009 American Institute of PhysicsSANDiE Network of Excellence of the EUFCT-PTDC/FIS/72843/200

    Multimode solutions of first-order elliptic quasilinear systems obtained from Riemann invariants

    Full text link
    Two new approaches to solving first-order quasilinear elliptic systems of PDEs in many dimensions are proposed. The first method is based on an analysis of multimode solutions expressible in terms of Riemann invariants, based on links between two techniques, that of the symmetry reduction method and of the generalized method of characteristics. A variant of the conditional symmetry method for constructing this type of solution is proposed. A specific feature of that approach is an algebraic-geometric point of view, which allows the introduction of specific first-order side conditions consistent with the original system of PDEs, leading to a generalization of the Riemann invariant method for solving elliptic homogeneous systems of PDEs. A further generalization of the Riemann invariants method to the case of inhomogeneous systems, based on the introduction of specific rotation matrices, enables us to weaken the integrability condition. It allows us to establish a connection between the structure of the set of integral elements and the possibility of constructing specific classes of simple mode solutions. These theoretical considerations are illustrated by the examples of an ideal plastic flow in its elliptic region and a system describing a nonlinear interaction of waves and particles. Several new classes of solutions are obtained in explicit form, including the general integral for the latter system of equations

    Nephrotoxic effects of paraoxon in three rat models of acute intoxication

    No full text
    The Publisher's final version can be found by following the DOI link. Open access article.The delayed effects of acute intoxication by organophosphates (OPs) are poorly understood, and the various experimental animal models often do not take into account species characteristics. The principal biochemical feature of rodents is the presence of carboxylesterase in blood plasma, which is a target for OPs and can greatly distort their specific effects. The present study was designed to investigate the nephrotoxic effects of paraoxon (O,O-diethyl O-(4-nitrophenyl) phosphate, POX) using three models of acute poisoning in outbred Wistar rats. In the first model (M1, POX2x group), POX was administered twice at doses 110 µg/kg and 130 µg/kg subcutaneously, with an interval of 1 h. In the second model (M2, CBPOX group), 1 h prior to POX poisoning at a dose of 130 µg/kg subcutaneously, carboxylesterase activity was pre-inhibited by administration of specific inhibitor cresylbenzodioxaphosphorin oxide (CBDP, 3.3 mg/kg intraperitoneally). In the third model (M3), POX was administered subcutaneously just once at doses of LD16 (241 µg/kg), LD50 (250 µg/kg), and LD84 (259 µg/kg). Animal observation and sampling were performed 1, 3, and 7 days after the exposure. Endogenous creatinine clearance (ECC) decreased in 24 h in the POX2x group (p = 0.011). Glucosuria was observed in rats 24 h after exposure to POX in both M1 and M2 models. After 3 days, an increase in urinary excretion of chondroitin sulfate (CS, p = 0.024) and calbindin (p = 0.006) was observed in rats of the CBPOX group. Morphometric analysis revealed a number of differences most significant for rats in the CBPOX group. Furthermore, there was an increase in the area of the renal corpuscles (p = 0.0006), an increase in the diameter of the lumen of the proximal convoluted tubules (PCT, p = 0.0006), and narrowing of the diameter of the distal tubules (p = 0.001). After 7 days, the diameter of the PCT lumen was still increased in the nephrons of the CBPOX group (p = 0.0009). In the M3 model, histopathological and ultrastructural changes in the kidneys were revealed after the exposure to POX at doses of LD50 and LD84. Over a period from 24 h to 3 days, a significant (p = 0.018) expansion of Bowman’s capsule was observed in the kidneys of rats of both the LD50 and LD84 groups. In the epithelium of the proximal tubules, stretching of the basal labyrinth, pycnotic nuclei, and desquamation of microvilli on the apical surface were revealed. In the epithelium of the distal tubules, partial swelling and destruction of mitochondria and pycnotic nuclei was observed, and nuclei were displaced towards the apical surface of cells. After 7 days of the exposure to POX, an increase in the thickness of the glomerular basement membrane (GBM) was observed in the LD50 and LD84 groups (p = 0.019 and 0.026, respectively). Moreover, signs of damage to tubular epithelial cells persisted with blockage of the tubule lumen by cellular detritus and local destruction of the surface of apical cells. Comparison of results from the three models demonstrates that the nephrotoxic effects of POX, evaluated at 1 and 3 days, appear regardless of prior inhibition of carboxylesterase activity

    A laser method of production of profiled detonation waves for explosion treatment of materials

    No full text
    Translated from Russian (Fiz. Khim. Obrab. Mater. 1995 (6) p. 154-160)Available from British Library Document Supply Centre-DSC:9023.190(VR-Trans--8804)T / BLDSC - British Library Document Supply CentreSIGLEGBUnited Kingdo

    Optical and structural properties of ZnO nanorods grown by pulsed laser deposition without a catalyst

    No full text
    Pulsed laser deposition without a catalyst is used to grow ZnO nanorods less than 10 nm in diameter. The structure of the rods is studied by Raman scattering during excitation in the visible and UV regions. The temperature dependences of exciton spectra and the behavior of green luminescence are investigated in the temperature range 10–280 K. At room temperature, the luminescence intensity of the ZnO nanorods in the exciton region is higher than the green luminescence intensity by a factor of 7.8.SANDiE Network of Excellence of the EUFCT-PTDC/FIS/72843/200

    Formation of epitaxial p-i-n structures on the basis of (In,Fe)Sb and (Ga,Fe)Sb diluted magnetic semiconductors layers

    No full text
    ultilayer structures on the basis of n-type (In,Fe)Sb and p-type (Ga,Fe)Sb diluted magnetic semiconductors (DMS) along with separate (In,Fe)Sb and (Ga,Fe)Sb layers were fabricated on GaAs substrates by pulsed laser sputtering of InSb, GaAs, GaSb, Sb and Fe targets in a vacuum. Transmission electron microscopy and energy-dispersive x-ray spectroscopy reveal a strong dependence of the phase composition of the (In,Fe)Sb compound on the growth temperature. An increase of the latter from 220 °C to 300 °C leads to a coalescence of Fe atoms and formation of a secondary crystalline phase in the (In,Fe)Sb layer with a total Fe content of ≈ 10 at. %. At the same time, the Ga0.8Fe0.2Sb layers obtained at 220 °C and 300 °C are single-phase. The separate In0.8Fe0.2Sb and Ga0.8Fe0.2Sb layers grown on i-GaAs at 220 °C are DMS with Curie temperatures of ≈ 190 K and 170 K, respectively. The three-layer p-i-n diode (In,Fe)Sb/GaAs/(Ga,Fe)Sb structure grown on a GaAs substrate at 220 °C with a Fe content of 10 ± 1 at. % in the single-phase (In,Fe)Sb and (Ga,Fe)Sb layers has a rather high crystalline quality and can be considered as a prototype of a bipolar spintronic device based on Fe-doped III-V semiconductors.publishe
    corecore