8 research outputs found

    Factors Defining the Functional Oligomeric State of Escherichia coli DegP Protease

    Get PDF
    Escherichia coli DegP protein is a periplasmic protein that functions both as a protease and as a chaperone. In the absence of substrate, DegP oligomerizes as a hexameric cage but in its presence DegP reorganizes into 12 and 24-mer cages with large chambers that house the substrate for degradation or refolding. Here, we studied the factors that determine the oligomeric state adopted by DegP in the presence of substrate. Using size exclusion chromatography and electron microscopy, we found that the size of the substrate molecule is the main factor conditioning the oligomeric state adopted by the enzyme. Other factors such as temperature, a major regulatory factor of the activity of this enzyme, did not influence the oligomeric state adopted by DegP. In addition, we observed that substrate concentration exerted an effect only when large substrates (full-length proteins) were used. However, small substrate molecules (peptides) always triggered the same oligomeric state regardless of their concentration. These results clarify important aspects of the regulation of the oligomeric state of DegP

    The role of the L2 loop in the regulation and maintaining the proteolytic activity of HtrA (DegP) protein from Escherichia coli.

    No full text
    The aim of this study was to characterize the role of particular elements of the regulatory loop L2 in the activation process and maintaining the proteolytic activity of HtrA (DegP) from Escherichia coli. We measured the effects of various mutations introduced to the L2 loop's region (residues 228-238) on the stability of HtrA molecule and its proteolytic activity. We demonstrated that most mutations affected the activity of HtrA. In the case of the following substitutions: L229N, N235I, I238N, the proteolytic activity was undetectable. Thus, the majority of interactions mediated by the studied amino-acid residues seem to play important role in maintaining the active conformation. Formation of contacts between the apical parts (residues 231-234) of the L2 loops within the HtrA trimer, in particular the residues D232, was shown to play a crucial role in the activation process of HtrA. Stabilization of these intermolecular interactions by substitution of D232 with valine caused a stimulation of proteolytic activity whereas deletion of this region abolished the activity. Since the pathogenic E. coli strains require active HtrA for virulence, the apical part of L2 is of particular interest in terms of structure-based drug design for treatment E. coli infections

    Temperature-induced conformational changes within the regulatory loops L1-L2-LA of the HtrA heat-shock protease from Escherichia coli.

    No full text
    The present investigation was undertaken to characterize mechanism of thermal activation of serine protease HtrA (DegP) from Escherichia coli. We monitored the temperature-induced structural changes within the regulatory loops L1, L2 and LA using a set of single-Trp HtrA mutants. The accessibility of each Trp residue to aqueous medium at temperature range 25-45 degrees C was assessed by steady-state fluorescence quenching using acrylamide and these results in combination with mean fluorescence lifetimes (tau) and wavelength emission maxima (lambda(em)max) were correlated with the induction of the HtrA proteolytic activity. Generally the temperature shift caused better exposure of Trps to the quencher; although, each of the loops was affected differently. The LA loop seemed to be the most prone to temperature-induced conformational changes and a significant opening of its structure was observed even at the lowest temperatures tested (25-30 degrees C). To the contrary, the L1 loop, containing the active site serine, remained relatively unchanged up to 40 degrees C. The L2 loop was the most exposed element and showed the most pronounced changes at temperatures exceeding 35 degrees C. Summing up, the HtrA structure appears to open gradually, parallel to the gradual increase of its proteolytic activity

    The active site residue V266 of Chlamydial HtrA is critical for substrate binding during both in vitro and in vivo conditions

    Get PDF
    HtrA is a complex, multimeric chaperone and serine protease important for the virulence and survival of many bacteria. Chlamydia trachomatis is an obligate, intracellular bacterial pathogen that is responsible for severe disease pathology. C. trachomatis HtrA (CtHtrA) has been shown to be highly expressed in laboratory models of disease. In this study, molecular modelling of CtHtrA protein active site structure identified putative S1-S3 subsite residues I242, I265, and V266. These residues were altered by site-directed mutagenesis, and these changes were shown to considerably reduce protease activity on known substrates and resulted in a narrower and distinct range of substrates compared to wild type. Bacterial two-hybrid analysis revealed that CtHtrA is able to interact in vivo with a broad range of protein sequences with high affinity. Notably, however, the interaction was significantly altered in 35 out of 69 clones when residue V266 was mutated, indicating that this residue has an important function during substrate binding

    HtrA proteases have a conserved activation mechanism that can be triggered by distinct molecular cues

    No full text
    HtrA proteases are tightly regulated proteolytic assemblies that are essential for maintaining protein homeostasis in extracytosolic compartments. Though HtrA proteases have been characterized in detail, their precise molecular mechanism for switching between different functional states is still unknown. To address this, we carried out biochemical and structural studies of DegP from Escherichia coli. We show that effector-peptide binding to the PDZ domain of DegP induces oligomer conversion from resting hexameric DegP6 into proteolytically active 12-mers and 24-mers (DegP12/24). Moreover, our data demonstrate that a specific protease loop (L3) functions as a conserved molecular switch of HtrA proteases. L3 senses the activation signal—that is, the repositioned PDZ domain of substrate-engaged DegP12/24 or the binding of allosteric effectors to regulatory HtrA proteases such as DegS—and transmits this information to the active site. Implications for protein quality control and regulation of oligomeric enzymes are discussed
    corecore