285 research outputs found
Ontogeny of midazolam glucuronidation in preterm infants
Purpose: In preterm infants, the biotransformation of midazolam (M) to 1-OH-midazolam (OHM) by cytochrome P450 3A4 (CYP3A4) is developmentally immature, but it is currently unknown whether the glucuronidation of OHM to 1-OH-midazolam glucuronide (OHMG) is also decreased. The aim of our study was to investigate the urinary excretion of midazolam and its metabolites OHM and OHMG in preterm neonates following the intravenous (IV) or oral (PO) administration of a single M dose. Methods: Preterm infants (post-natal age 3-13 days, gestational age 26-34 4/7 weeks) scheduled to undergo a stressful procedure received a 30-min IV infusion (n=15) or a PO bolus dose (n=7) of 0.1 mg/kg midazolam. The percentage of midazolam dose excreted in the urine as M, OHM and OHMG up to 6 h post-dose was determined. Results: The median percentage of the midazolam dose excreted as M, OHM and OHMG in the urine during the 6-h interval after the IV infusion was 0.44% (range 0.02-1.39%), 0.04% (0.01-0.13%) and 1.57% (0.36-7.7%), respectively. After administration of the PO bolus dose, the median percentage of M, OHM and OHMG excreted in the urine was 0.11% (0.02-0.59%), 0.02% (0.00-0.10%) and 1.69% (0.58-7.31%), respectively. The proportion of the IV midazolam dose excreted as OHMG increased significantly with postconceptional age (r=0.73, p <0.05). Conclusion: The glucuronidation of OHM appears immature in preterm infants less than 2 weeks of age. The observed increase in urinary excretion of OHMG with postconceptional age likely reflects the combined maturation of glucuronidation and renal function
Willingness-to-use and preferences for model-informed antenatal doses: a cross-sectional study among European healthcare practitioners and pregnant women
Background: Physiological changes in pregnancy may affect drug safety and efficacy, sometimes requiring dose adjustments. Pregnancy-adjusted doses, however, are missing for most medications. Increasingly, pharmacokinetic models can be used for antenatal dose finding. Given the novelty of this technique and questions regarding dose credibility, the acceptability of model-informed antenatal doses should be explored.
//
Objective: We aimed to assess the willingness-to-use and preferred features for model-informed antenatal doses among healthcare practitioners (HCPs) and pregnant women in European countries.
//
Methods: A cross-sectional, web-based study drawing on two open surveys was performed between 8 September and 30 November 2022. Each survey comprised statements drawn from prior focus groups, associated with Likert-scales. Themes included respondents’ information needs, search behaviours along with their willingness-to-use and preferred features for model-informed antenatal doses. The surveys were disseminated through professional societies, pregnancy websites and social media. A descriptive analysis was performed.
//
Results: In total, 608 HCPs from different specialties and 794 pregnant women across 15 countries participated, with 81% of respondents across both groups in the Netherlands or Belgium. Among pregnant women, 31% were medical professionals and 85% used medication during pregnancy. Eighty-three percent of HCPs found current antenatal pharmacotherapy suboptimal and 97% believed that model-informed antenatal doses would enhance the quality of antenatal care. Most HCPs (93%) and pregnant women (75%) would be willing to follow model-informed antenatal doses. Most HCPs desired access to the evidence (88%), including from pharmacokinetic modelling (62%). Most pregnant women (96%) wanted to understand antenatal dosing rationales and to be involved in dosing decisions (97%).
//
Conclusion: The willingness-to-use model-informed antenatal doses is high among HCPs and pregnant women provided that certain information needs are met
Pharmacokinetic studies in children: recommendations for practice and research.
Optimising the dosing of medicines for neonates and children remains a challenge. The importance of pharmacokinetic (PK) and pharmacodynamic (PD) research is recognised both in medicines regulation and paediatric clinical pharmacology, yet there remain barriers to undertaking high-quality PK and PD studies. While these studies are essential in understanding the dose-concentration-effect relationship and should underpin dosing recommendations, this review examines how challenges affecting the design and conduct of paediatric pharmacological studies can be overcome using targeted pharmacometric strategies. Model-based approaches confer benefits at all stages of the drug life-cycle, from identifying the first dose to be used in children, to clinical trial design, and optimising the dosing regimens of older, off-patent medications. To benefit patients, strategies to ensure that new PK, PD and trial data are incorporated into evidence-based dosing recommendations are needed. This review summarises practical strategies to address current challenges, particularly the use of model-based (pharmacometric) approaches in study design and analysis. Recommendations for practice and directions for future paediatric pharmacological research are given, based on current literature and our joint international experience. Success of PK research in children requires a robust infrastructure, with sustainable funding mechanisms at its core, supported by political and regulatory initiatives, and international collaborations. There is a unique opportunity to advance paediatric medicines research at an unprecedented pace, bringing the age of evidence-based paediatric pharmacotherapy into sight
Clinical, methodology, and patient/carer expert advice in pediatric drug development by conect4children.
Many medicines are used "off-label" in children outside the terms of the license. Feasible pediatric clinical trials are a challenge to design. Conect4children (c4c) is an Innovative Medicines Initiative project to set up a pan-European pediatric clinical trial network aiming to facilitate the development of new medicines for children. To optimize pediatric trial development by promoting innovative trial design, c4c set up a European multidisciplinary advice service, including the voice of young patients and families, tailored to industry and academia. A network of experts was established to provide multidisciplinary advice to trial sponsors. Experts were selected to join clinical and innovative methodology expert groups. A patient and public involvement (PPI) database, to include the expert opinion of patients and parents/carers was formed. A stepwise process was developed: (1) sponsors contact c4c, (2) scoping interview takes place, (3) ad hoc advice group formed, (5) advice meeting held, and (6) advice report provided. Feedback on the process was collected. Twenty-four clinical and innovative methodology expert groups (>400 experts) and a PPI database of 135 registrants were established. As of September 30, 2022, 36 advice requests were received, with 25 requests completed. Clinical and methodology experts and PPI representatives participated in several advice requests. Sponsors appreciated the advice quality and the multidisciplinary experts from different countries, including experts not known before. Experts and PPI participants were generally satisfied with the process. The c4c project has shown successful proof of concept for a service that presents a new framework to plan innovative and feasible pediatric trials
Human Ontogeny of Drug Transporters: Review and Recommendations of the Pediatric Transporter Working Group
The critical importance of membrane-bound transporters in pharmacotherapy is widely recognized, but little is known about drug transporter activity in children. In this white paper, the Pediatric Transporter Working Group presents a systematic review of the ontogeny of clinically relevant membrane transporters (e.g., SLC, ABC superfamilies) in intestine, liver, and kidney. Different developmental patterns for individual transporters emerge, but much remains unknown. Recommendations to increase our understanding of membrane transporters in pediatric pharmacotherapy are presented
Current knowledge, challenges and innovations in developmental pharmacology: A combined conect4children Expert Group and European Society for Developmental, Perinatal and Paediatric Pharmacology White Paper
Developmental pharmacology describes the impact of maturation on drug disposition (pharmacokinetics, PK) and drug effects (pharmacodynamics, PD) throughout the paediatric age range. This paper, written by a multidisciplinary group of experts, summarizes current knowledge, and provides suggestions to pharmaceutical companies, regulatory agencies and academicians on how to incorporate the latest knowledge regarding developmental pharmacology and innovative techniques into neonatal and paediatric drug development. Biological aspects of drug absorption, distribution, metabolism and excretion (ADME) throughout development are summarized. Although this area made enormous progress during the last two decades, remaining knowledge gaps were identified. Minimal risk and burden designs allow for optimally informative but minimally invasive PK sampling, while concomitant profiling of drug metabolites may provide additional insight in the unique PK behavior in children. Furthermore, developmental PD needs to be considered during drug development, which is illustrated by disease- and/or target organ-specific examples. Identifying and testing PD targets and effects in special populations, and application of age- and/or population-specific assessment tools are discussed. Drug development plans also need to incorporate innovative techniques like preclinical models to study therapeutic strategies, and shift from sequential enrollment of subgroups, to more rational designs. To stimulate appropriate research plans, illustrations of specific PK/PD-related as well as drug safety-related challenges during drug development are provided. The suggestions made in this joint paper of the Innovative Medicines Initiative conect4children Expert group on Developmental Pharmacology and the European Society for Developmental, Perinatal and Paediatric Pharmacology, should facilitate all those involved in drug development
Non-inferiority double-blind randomised controlled trial comparing gabapentin versus tramadol for the treatment of chronic neuropathic or mixed pain in children and adolescents: the GABA-1 trial-a study protocol.
INTRODUCTION: Gabapentin is currently used ‘off-label’ in children and adolescents with chronic neuropathic pain, and reliable evidence of its effects and optimal dosing are lacking. OBJECTIVES: The GABA-1 trial aims to compare the efficacy and safety of gabapentin liquid formulation relative to tramadol and to explore the pharmacokinetics of both drugs in the treatment of chronic, neuropathic or mixed pain in the paediatric population. METHODS AND ANALYSIS: The trial is a multicentre, double-blind, double-dummy, randomised, active-controlled, non-inferiority trial. Participants aged from 3 months to <18 years of age with moderate to severe (≥4/10 in age-appropriate pain scales) chronic neuropathic or mixed pain will be recruited in 14 clinical sites in eight European countries. A total of 94 subjects will be randomised to receive gabapentin and tramadol placebo or tramadol and gabapentin placebo throughout 16–19 weeks (including 3 weeks of titration [optimisation period], 12 weeks of treatment at a stable dose [maintenance period] and 1–4 weeks of tapering [discontinuation period]). The primary objective is to assess the efficacy of gabapentin relative to tramadol for the treatment of moderate to severe chronic neuropathic or mixed pain by comparing the difference in average pain scores (assessed by age-appropriate pain scales) between intervention arms after 15 weeks of treatment. Secondary objectives include the assessment of the safety, quality of life and global satisfaction with treatment and the description of the pharmacokinetic–pharmacodynamic relationship of gabapentin liquid formulation and tramadol oral drops to validate the recommended paediatric doses. Only rescue pain medication by paracetamol and/or ibuprofen is allowed during the trial. ETHICS AND DISSEMINATION: Ethic approval was obtained in the eight participating countries. Results will be submitted for publication in a peer-reviewed journal and presented at one or more scientific conferences. TRIAL REGISTRATION NUMBERS: 2014-004851-30 and NCT02722603. TRIAL STATUS: Ongoing research study, currently recruiting
Gabapentin as add-on to morphine for severe neuropathic or mixed pain in children from age 3 months to 18 years - Evaluation of the safety, pharmacokinetics, and efficacy of a new gabapentin liquid formulation: Study protocol for a randomized controlled trial
Background: Gabapentin has shown efficacy in the treatment of chronic neuropathic or mixed pain in adults. Although pediatric pain specialists have extensive experience with gabapentin for the treatment of neuropathic pain, its use is off-label. Its efficacy and safety in this context have never been shown. The aim of this trial is to compare gabapentin with placebo as add-on to morphine for the treatment of severe chronic mixed or neuropathic pain in children. This trial is part of the European Union Seventh Framework Programme project Gabapentin in Paediatric Pain (GAPP) to develop a pediatric use marketing authorization for a new gabapentin suspension. Methods/design: The GAPP-2 study is a randomized, double-blind, placebo-controlled, multicenter superiority phase II study in children with severe chronic neuropathic or mixed pain. Its primary objective is to evaluate the efficacy of a gabapentin liquid formulation as adjunctive therapy to morphine. Sixty-six eligible children 3 months to 18 years of age with severe pain (pain scores ≥ 7), stratified in three age groups, will be randomized to receive gabapentin (to an accumulating dose of 45 to 63 mg/kg/day, dependent on age) or placebo, both in addition to morphine, for 12 weeks. Randomization will be preceded by a short washout period, and treatment will be initiated by a titration period of 3 weeks. After the treatment period, medication will be tapered during 4 weeks. The primary endpoint is the average pain scores in the two treatment groups (average of two measures each day for 3 days before the end-of-study visit [V10] assessed by age-appropriate pain scales (Face, Legs, Activity, Cry, Consolability scale; Faces Pain Scale-Revised; Numeric Rating Scale). Secondary outcomes include percentage responders to treatment (subjects with 30% reduction in pain scale), number of episodes of breakthrough pain, number of rescue interventions, number of pain-free days, participant dropouts, quality of life (Pediatric Quality of Life Inventory), and acceptability of treatment. Outcomes will be measured at the end-of-study visit after 12 weeks of treatment at the optimal gabapentin dose. Groups will be compared on an intention-to-treat basis. Discussion: We hope to provide evidence that the combination of morphine and gabapentin will provide better analgesia than morphine alone and will be safe. We also aim to obtain confirmation of the recommended pediatric dose. Trial registration: EudractCT, 2014-004897-40. Registered on 7 September 2017. ClinicalTrials.gov, NCT03275012. Registered on 7 September 2017
- …