11 research outputs found

    A randomized study of pomalidomide vs placebo in persons with myeloproliferative neoplasm-associated myelofibrosis and RBC-transfusion dependence

    Get PDF
    RBC-transfusion dependence is common in persons with myeloproliferative neoplasm (MPN)-associated myelofibrosis. The objective of this study was to determine the rates of RBC-transfusion independence after therapy with pomalidomide vs placebo in persons with MPN-associated myelofibrosis and RBC-transfusion dependence. Two hundred and fifty-two subjects (intent-to-treat (ITT) population) including 229 subjects confirmed by central review (modified ITT population) were randomly assigned (2:1) to pomalidomide or placebo. Trialists and subjects were blinded to treatment allocation. Primary end point was proportion of subjects achieving RBC-transfusion independence within 6 months. One hundred and fifty-two subjects received pomalidomide and 77 placebo. Response rates were 16% (95% confidence interval (CI), 11, 23%) vs 16% (8, 26% P=0.87). Response in the pomalidomide cohort was associated with ⩽4 U RBC/28 days (odds ratio (OR)=3.1; 0.9, 11.1), age ⩽65 (OR=2.3; 0.9, 5.5) and type of MPN-associated myelofibrosis (OR=2.6; 0.7, 9.5). Responses in the placebo cohort were associated with ⩽4 U RBC/28 days (OR=8.6; 0.9, 82.3), white blood cell at randomization >25 × 10(9)/l (OR=4.9; 0.8, 28.9) and interval from diagnosis to randomization >2 years (OR=4.9; 1.1, 21.9). Pomalidomide was associated with increased rates of oedema and neutropenia but these adverse effects were manageable. Pomalidomide and placebo had similar RBC-transfusion-independence response rates in persons with MPN-associated RBC-transfusion dependence

    Epigenetic abnormalities in myeloproliferative neoplasms: a target for novel therapeutic strategies

    Get PDF
    The myeloproliferative neoplasms (MPNs) are a group of clonal hematological malignancies characterized by a hypercellular bone marrow and a tendency to develop thrombotic complications and to evolve to myelofibrosis and acute leukemia. Unlike chronic myelogenous leukemia, where a single disease-initiating genetic event has been identified, a more complicated series of genetic mutations appear to be responsible for the BCR-ABL1-negative MPNs which include polycythemia vera, essential thrombocythemia, and primary myelofibrosis. Recent studies have revealed a number of epigenetic alterations that also likely contribute to disease pathogenesis and determine clinical outcome. Increasing evidence indicates that alterations in DNA methylation, histone modification, and microRNA expression patterns can collectively influence gene expression and potentially contribute to MPN pathogenesis. Examples include mutations in genes encoding proteins that modify chromatin structure (EZH2, ASXL1, IDH1/2, JAK2V617F, and IKZF1) as well as epigenetic modification of genes critical for cell proliferation and survival (suppressors of cytokine signaling, polycythemia rubra vera-1, CXC chemokine receptor 4, and histone deacetylase (HDAC)). These epigenetic lesions serve as novel targets for experimental therapeutic interventions. Clinical trials are currently underway evaluating HDAC inhibitors and DNA methyltransferase inhibitors for the treatment of patients with MPNs
    corecore