204 research outputs found

    Holographic reconstruction of spacetime and renormalization in the AdS/CFT correspondence

    Get PDF
    We develop a systematic method for renormalizing the AdS/CFT prescription for computing correlation functions. This involves regularizing the bulk on-shell supergravity action in a covariant way, computing all divergences, adding counterterms to cancel them and then removing the regulator. We explicitly work out the case of pure gravity up to six dimensions and of gravity coupled to scalars. The method can also be viewed as providing a holographic reconstruction of the bulk spacetime metric and of bulk fields on this spacetime, out of conformal field theory data. Knowing which sources are turned on is sufficient in order to obtain an asymptotic expansion of the bulk metric and of bulk fields near the boundary to high enough order so that all infrared divergences of the on-shell action are obtained. To continue the holographic reconstruction of the bulk fields one needs new CFT data: the expectation value of the dual operator. In particular, in order to obtain the bulk metric one needs to know the expectation value of stress-energy tensor of the boundary theory. We provide completely explicit formulae for the holographic stress-energy tensors up to six dimensions. We show that both the gravitational and matter conformal anomalies of the boundary theory are correctly reproduced. We also obtain the conformal transformation properties of the boundary stress-energy tensors

    Entanglement Entropy in Non-Relativistic Field Theories

    Get PDF
    We calculate entanglement entropy in a non-relativistic field theory described by the Schr\"odinger operator. We demonstrate that the entropy is characterized by i) the area law and ii) UV divergences that are identical to those in the relativistic field theory. These observations are further supported by a holographic consideration. We use the non-relativistic symmetry and completely specify entanglement entropy in large class of non-relativistic theories described by the field operators polynomial in derivatives. We suggest that the area law of the entropy can be tested in experiments with condensed matter systems such as liquid helium.Comment: 4 pages; v2: discussion of interacting fields include

    Remarks on effective action and entanglement entropy of Maxwell field in generic gauge

    Full text link
    We analyze the dependence of the effective action and the entanglement entropy in the Maxwell theory on the gauge fixing parameter aa in dd dimensions. For a generic value of aa the corresponding vector operator is nonminimal. The operator can be diagonalized in terms of the transverse and longitudinal modes. Using this factorization we obtain an expression for the heat kernel coefficients of the nonminimal operator in terms of the coefficients of two minimal Beltrami-Laplace operators acting on 0- and 1-forms. This expression agrees with an earlier result by Gilkey et al. Working in a regularization scheme with the dimensionful UV regulators we introduce three different regulators: for transverse, longitudinal and ghost modes, respectively. We then show that the effective action and the entanglement entropy do not depend on the gauge fixing parameter aa provided the certain (aa-dependent) relations are imposed on the regulators. Comparing the entanglement entropy with the black hole entropy expressed in terms of the induced Newton's constant we conclude that their difference, the so-called Kabat's contact term, does not depend on the gauge fixing parameter aa. We consider this as an indication of gauge invariance of the contact term.Comment: 15 pages; v2: typos in eqs. (31), (32), (34), (36) corrected; discussion in section 6 expande

    Heat Kernel Expansion and Extremal Kerr-Newmann Black Hole Entropy in Einstein-Maxwell Theory

    Full text link
    We compute the second Seely-DeWitt coefficient of the kinetic operator of the metric and gauge fields in Einstein-Maxwell theory in an arbitrary background field configuration. We then use this result to compute the logarithmic correction to the entropy of an extremal Kerr-Newmann black hole.Comment: 12 page

    Logarithmic Corrections to Schwarzschild and Other Non-extremal Black Hole Entropy in Different Dimensions

    Full text link
    Euclidean gravity method has been successful in computing logarithmic corrections to extremal black hole entropy in terms of low energy data, and gives results in perfect agreement with the microscopic results in string theory. Motivated by this success we apply Euclidean gravity to compute logarithmic corrections to the entropy of various non-extremal black holes in different dimensions, taking special care of integration over the zero modes and keeping track of the ensemble in which the computation is done. These results provide strong constraint on any ultraviolet completion of the theory if the latter is able to give an independent computation of the entropy of non-extremal black holes from microscopic description. For Schwarzschild black holes in four space-time dimensions the macroscopic result seems to disagree with the existing result in loop quantum gravity.Comment: LaTeX, 40 pages; corrected small typos and added reference

    Holographic Studies of Entanglement Entropy in Superconductors

    Full text link
    We present the results of our studies of the entanglement entropy of a superconducting system described holographically as a fully back-reacted gravity system, with a stable ground state. We use the holographic prescription for the entanglement entropy. We uncover the behavior of the entropy across the superconducting phase transition, showing the reorganization of the degrees of freedom of the system. We exhibit the behaviour of the entanglement entropy from the superconducting transition all the way down to the ground state at T=0. In some cases, we also observe a novel transition in the entanglement entropy at intermediate temperatures, resulting from the detection of an additional length scale.Comment: 21 pages, 14 figures. v2:Clarified some remarks concerning stability. v3: Updated to the version that appears in JHE

    Gravitational Chern-Simons Lagrangians and black hole entropy

    Get PDF
    We analyze the problem of defining the black hole entropy when Chern-Simons terms are present in the action. Extending previous works, we define a general procedure, valid in any odd dimensions both for purely gravitational CS terms and for mixed gauge-gravitational ones. The final formula is very similar to Wald's original formula valid for covariant actions, with a significant modification. Notwithstanding an apparent violation of covariance we argue that the entropy formula is indeed covariant.Comment: 39 page

    Black Holes in Gravity with Conformal Anomaly and Logarithmic Term in Black Hole Entropy

    Full text link
    We present a class of exact analytic and static, spherically symmetric black hole solutions in the semi-classical Einstein equations with Weyl anomaly. The solutions have two branches, one is asymptotically flat and the other asymptotically de Sitter. We study thermodynamic properties of the black hole solutions and find that there exists a logarithmic correction to the well-known Bekenstein-Hawking area entropy. The logarithmic term might come from non-local terms in the effective action of gravity theories. The appearance of the logarithmic term in the gravity side is quite important in the sense that with this term one is able to compare black hole entropy up to the subleading order, in the gravity side and in the microscopic statistical interpretation side.Comment: Revtex, 10 pages. v2: minor changes and to appear in JHE

    Entanglement Entropy of Two Spheres

    Full text link
    We study the entanglement entropy S_{AB} of a massless free scalar field on two spheres A and B whose radii are R_1 and R_2, respectively, and the distance between the centers of them is r. The state of the massless free scalar field is the vacuum state. We obtain the result that the mutual information S_{A;B}:=S_A+S_B-S_{AB} is independent of the ultraviolet cutoff and proportional to the product of the areas of the two spheres when r>>R_1,R_2, where S_A and S_B are the entanglement entropy on the inside region of A and B, respectively. We discuss possible connections of this result with the physics of black holes.Comment: 17 pages, 9 figures; v4, added references, revised argument in section V, a typo in eq.(25) corrected, published versio

    Positivity, entanglement entropy, and minimal surfaces

    Full text link
    The path integral representation for the Renyi entanglement entropies of integer index n implies these information measures define operator correlation functions in QFT. We analyze whether the limit n→1n\rightarrow 1, corresponding to the entanglement entropy, can also be represented in terms of a path integral with insertions on the region's boundary, at first order in n−1n-1. This conjecture has been used in the literature in several occasions, and specially in an attempt to prove the Ryu-Takayanagi holographic entanglement entropy formula. We show it leads to conditional positivity of the entropy correlation matrices, which is equivalent to an infinite series of polynomial inequalities for the entropies in QFT or the areas of minimal surfaces representing the entanglement entropy in the AdS-CFT context. We check these inequalities in several examples. No counterexample is found in the few known exact results for the entanglement entropy in QFT. The inequalities are also remarkable satisfied for several classes of minimal surfaces but we find counterexamples corresponding to more complicated geometries. We develop some analytic tools to test the inequalities, and as a byproduct, we show that positivity for the correlation functions is a local property when supplemented with analyticity. We also review general aspects of positivity for large N theories and Wilson loops in AdS-CFT.Comment: 36 pages, 10 figures. Changes in presentation and discussion of Wilson loops. Conclusions regarding entanglement entropy unchange
    • …
    corecore