4 research outputs found

    Genetic and morphometric characterization of clones of Prosopis alba, Algarobia, selected for salt tolerance

    Get PDF
    Prosopis alba is an important Argentinean species with a great potential for the production of timber and nontimber products. Many studies showed high salt tolerance of this species, which allows it to be used in afforestation and reforestation of saline soils. In this study, we applied the morphometric technique to characterize 21 salt-tolerant clones (ST). Twenty of these clones were studied by inter-simple sequence repeat (ISSR) and simple sequence repeat (SSR), and their molecular patterns were compared with those of 22 individuals selected for salt sensitivity (SS). Most morphological traits revealed highly significant differences among ST clones, and four out of 11 characters showed high heritability. ISSR analysis allowed detecting 89 loci, 91 % of them variable. ST versus SS groups differ significantly from each other by the frequencies of 22 of these loci, from which 12 were significant at the matrix level. Analysis of six SSR loci for the same groups indicated that all of them were polymorphic at the 1 % criterion. Allelic frequencies of SSR also showed highly significant differences between SS and ST groups. Analysis of coancestry between individuals within SS and ST groups and between groups indicated that the molecular differentiation between them cannot be explained solely on relationship grounds. Molecular groupings based on ISSR and SSR showed consistency to each other, as supported by the highly significant coinertia in the distribution of individuals in principal component analysis scatterplots. This work is the first contribution which tends to associate molecular patterns with life history traits and morphological differences in Prosopis clones.Fil: Roser, Leandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Ecología, Genética y Evolución de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Ecología, Genética y Evolución de Buenos Aires; ArgentinaFil: Ferreyra, Laura Ines. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Ecología, Genética y Evolución de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Ecología, Genética y Evolución de Buenos Aires; ArgentinaFil: Ewens, Mauricio. Universidad Catolica de Santiago del Estero; ArgentinaFil: Vilardi, Juan Cesar. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Ecología, Genética y Evolución de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Ecología, Genética y Evolución de Buenos Aires; ArgentinaFil: Saidman, Beatriz Ofelia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Ecología, Genética y Evolución de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Ecología, Genética y Evolución de Buenos Aires; Argentin

    Progress in Myrtacease genetics and genomics: Eucalyptus as the pivotal genus

    Get PDF
    The status of genomics and genetics research in the Myrtaceae, a large family of dicotyledonous woody plants, is reviewed with Eucalyptus as the focal genus. The family contains over 5,650 species in 130 to 150 genera, predominantly of neo-tropical and Southern Hemisphere distribution. Several genera are well known for their economic importance worldwide. Myrtaceae are typically diploids with small to intermediate genome size. Microsatellites have been developed for several genera while higher throughput marker systems such as diversity arrays technology and single nucleotide polymorphism are available for Eucalyptus. Molecular data have been fundamental to current perspectives on the phylogeny, phylogeography and taxonomy of the Myrtaceae, while numerous studies of genetic diversity have been carried out particularly as it relates to endangered, rare, fragmented, overharvested or economically important species. Large expressed sequence tag collections for species of Eucalyptus have recently become public to support the annotation of the Eucalyptus grandis genome. Transcriptomics in Eucalyptus has advanced by microarrays and next-generation sequencing focusing on wood development. Linkage maps for Eucalyptus display high synteny across species and have been extensively used to map quantitative trait loci for a number of traits including growth, wood quality, disease and insect resistance. Candidate gene-based association genetics have successfully found marker–trait associations for wood and fiber traits. Genomic selection experiments have demonstrated clear potential to improve the efficiency of breeding programs while freeze-tolerant transgenic Eucalyptus trials have recently been initiated. The recently released E. grandis genome, sequenced to an average coverage of 8�, will open up exceptional opportunities to advance Myrtaceae genetics and genomics research
    corecore