24 research outputs found

    Influence of O6-benzylguanine on the anti-tumour activity and normal tissue toxicity of 1,3-bis(2-chloroethyl)-1-nitrosourea and molecular combinations of 5-fluorouracil and 2-chloroethyl-1-nitrosourea in mice

    Get PDF
    Previous studies have demonstrated that novel molecular combinations of 5-fluorouracil (5FU) and 2-chloroethyl-1-nitrosourea (CNU) have good preclinical activity and may exert less myelotoxicity than the clinically used nitrosoureas such as 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU). This study examined the effect of O6-alkylguanine-DNA-alkyltransferase (ATase) depletion by the pseudosubstrate O6-benzylguanine (BG) on the anti-tumour activity and normal tissue toxicity in mice of three such molecular combinations, in comparison with BCNU. When used as single agents at their maximum tolerated dose, all three novel compounds produced a significant growth retardation of BCNU-resistant murine colon and human breast xenografts. This in vivo anti-tumour effect was potentiated by BG, but was accompanied by severe myelotoxicity as judged by spleen colony forming assays. However, while tumour resistance to BCNU was overcome using BG, this was at the expense of enhanced bone marrow, gut and liver toxicity. Therefore, although this ATase-depletion approach resulted in improved anti-tumour activity for all three 5-FU:CNU molecular combinations, the potentiated toxicities in already dose-limiting tissues indicate that these types of agents offer no therapeutic advantage over BCNU when they are used together with BG. © 1999 Cancer Research Campaig

    Household, community, sub-national and country-level predictors of primary cooking fuel switching in nine countries from the PURE study

    Get PDF
    Introduction. Switchingfrom polluting (e.g. wood, crop waste, coal)to clean (e.g. gas, electricity) cooking fuels can reduce household air pollution exposures and climate-forcing emissions.While studies have evaluated specific interventions and assessed fuel-switching in repeated cross-sectional surveys, the role of different multilevel factors in household fuel switching, outside of interventions and across diverse community settings, is not well understood. Methods.We examined longitudinal survey data from 24 172 households in 177 rural communities across nine countries within the Prospective Urban and Rural Epidemiology study.We assessed household-level primary cooking fuel switching during a median of 10 years offollow up (∼2005–2015).We used hierarchical logistic regression models to examine the relative importance of household, community, sub-national and national-level factors contributing to primary fuel switching. Results. One-half of study households(12 369)reported changing their primary cookingfuels between baseline andfollow up surveys. Of these, 61% (7582) switchedfrom polluting (wood, dung, agricultural waste, charcoal, coal, kerosene)to clean (gas, electricity)fuels, 26% (3109)switched between different polluting fuels, 10% (1164)switched from clean to polluting fuels and 3% (522)switched between different clean fuels

    Household, community, sub-national and country-level predictors of primary cooking fuel switching in nine countries from the PURE study

    Get PDF
    corecore