8 research outputs found
Numerical Construction of LISS Lyapunov Functions under a Small Gain Condition
In the stability analysis of large-scale interconnected systems it is
frequently desirable to be able to determine a decay point of the gain
operator, i.e., a point whose image under the monotone operator is strictly
smaller than the point itself. The set of such decay points plays a crucial
role in checking, in a semi-global fashion, the local input-to-state stability
of an interconnected system and in the numerical construction of a LISS
Lyapunov function. We provide a homotopy algorithm that computes a decay point
of a monotone op- erator. For this purpose we use a fixed point algorithm and
provide a function whose fixed points correspond to decay points of the
monotone operator. The advantage to an earlier algorithm is demonstrated.
Furthermore an example is given which shows how to analyze a given perturbed
interconnected system.Comment: 30 pages, 7 figures, 4 table
Input-to-state stability of infinite-dimensional control systems
We develop tools for investigation of input-to-state stability (ISS) of
infinite-dimensional control systems. We show that for certain classes of
admissible inputs the existence of an ISS-Lyapunov function implies the
input-to-state stability of a system. Then for the case of systems described by
abstract equations in Banach spaces we develop two methods of construction of
local and global ISS-Lyapunov functions. We prove a linearization principle
that allows a construction of a local ISS-Lyapunov function for a system which
linear approximation is ISS. In order to study interconnections of nonlinear
infinite-dimensional systems, we generalize the small-gain theorem to the case
of infinite-dimensional systems and provide a way to construct an ISS-Lyapunov
function for an entire interconnection, if ISS-Lyapunov functions for
subsystems are known and the small-gain condition is satisfied. We illustrate
the theory on examples of linear and semilinear reaction-diffusion equations.Comment: 33 page