15 research outputs found
SP-A binds alpha(1)-antitrypsin in vitro and reduces the association rate constant for neutrophil elastase
BACKGROUND: α1-antitrypsin and surfactant protein-A (SP-A) are major lung defense proteins. With the hypothesis that SP-A could bind α1-antitrypsin, we designed a series of in vitro experiments aimed at investigating the nature and consequences of such an interaction. METHODS AND RESULTS: At an α1-antitrypsin:SP-A molar ratio of 1:1, the interaction resulted in a calcium-dependent decrease of 84.6% in the association rate constant of α1-antitrypsin for neutrophil elastase. The findings were similar when SP-A was coupled with the Z variant of α1-antitrypsin. The carbohydrate recognition domain of SP-A appeared to be a major determinant of the interaction, by recognizing α1-antitrypsin carbohydrate chains. However, binding of SP-A carbohydrate chains to the α1-antitrypsin amino acid backbone and interaction between carbohydrates of both proteins are also possible. Gel filtration chromatography and turnover per inactivation experiments indicated that one part of SP-A binds several molar parts of α1-antitrypsin. CONCLUSION: We conclude that the binding of SP-A to α1-antitrypsin results in a decrease of the inhibition of neutrophil elastase. This interaction could have potential implications in the physiologic regulation of α1-antitrypsin activity, in the pathogenesis of pulmonary emphysema, and in the defense against infectious agents
Microfluidics in Biotechnology: Quo Vadis
Winkler S, Grünberger A, Bahnemann J. Microfluidics in Biotechnology: Quo Vadis. Advances in biochemical engineering/biotechnology. 2021:1-26.The emerging technique of microfluidics offers new approaches for precisely controlling fluidic conditions on a small scale, while simultaneously facilitating data collection in both high-throughput and quantitative manners. As such, the so-called lab-on-a-chip (LOC) systems have the potential to revolutionize the field of biotechnology. But what needs to happen in order to truly integrate them into routine biotechnological applications? In this chapter, some of the most promising applications of microfluidic technology within the field of biotechnology are surveyed, and a few strategies for overcoming current challenges posed by microfluidic LOC systems are examined. In addition, we also discuss the intensifying trend (across all biotechnology fields) of using point-of-use applications which is being facilitated by new technological achievements