3 research outputs found

    Proximal major limb amputations – a retrospective analysis of 45 oncological cases

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Proximal major limb amputations due to malignant tumors have become rare but are still a valuable treatment option in palliation and in some cases can even cure. The aim of this retrospective study was to analyse outcome in those patients, including the postoperative course, survival, pain, quality of life, and prosthesis usage.</p> <p>Methods</p> <p>Data of 45 consecutive patients was acquired from patient's charts and contact to patients, and general practitioners. Patients with interscapulothoracic amputation (n = 14), shoulder disarticulation (n = 13), hemipelvectomy (n = 3) or hip disarticulation (n = 15) were included.</p> <p>Results</p> <p>The rate of proximal major limb amputations in patients treated for sarcoma was 2.3% (37 out of 1597). Survival for all patients was 42.9% after one year and 12.7% after five years. Survival was significantly better in patients with complete tumor resections. Postoperative chemotherapy and radiation did not prolong survival. Eighteen percent of the patients with malignant disease developed local recurrence. In 44%, postoperative complications were observed. Different modalities of postoperative pain management and the site of the amputation had no significant influence on long-term pain assessment and quality of life. Eighty-seven percent suffered from phantom pain, 15.6% considered their quality of life worse than before the operation. Thirty-two percent of the patients who received a prosthesis used it regularly.</p> <p>Conclusion</p> <p>Proximal major limb amputations severely interfere with patients' body function and are the last, albeit valuable, option within the treatment concept of extremity malignancies or severe infections. Besides short survival, high complication rates, and postoperative pain, patients' quality of life can be improved for the time they have remaining.</p

    Resilience of cereal crops to abiotic stress: A review

    Get PDF
    In the last century, conventional selection and breeding program proved to be highly effective in improving crops against abiotic stresses. Therefore, breeding for abiotic stress tolerance in crop plants should be given high research priority as abiotic stresses are the main factor negatively affecting crop growth and productivity throughout the globe. Advancement in physiology, genetics and molecular biology, have greatly improved our understanding of plant responses to stresses. Many studies show that salt tolerance is tightly associated with the ability to maintain ion homeostasis under salinity. Na+ transporter SKC1 unloads Na+ from xylem; plasma membrane N+/H+ antiporter SOS1 excludes sodium out of cytosol, and tonoplast Na+/H+ antiporter NHX1 sequesters Na+ into the vacuole. Silicon deposition in exodermis and endodermis of rice root reduces sodium transport through the apoplastic pathway. A number of transcription factors regulate stress-inducible gene expression that leads to initiating stress responses and establishing plant stress tolerance. Over expression of some transcription factors, including DREB/CBF and NAC, enhances salt, drought, and cold tolerance in rice. A variant of one of ERF family genes, Sub1A-1, confers immersion tolerance to lowland rice. These findings and their exploitation will hold promise for engineering breeding to protect crop plants from certain abiotic stresses. Although, cereal crops are also quite sensitive to various abiotic stresses, hence in this short review, we will present recent progresses in adaptation of cereal crops to salinity, drought and cold tolerance are emphasized and the future potentials are highlighted.Keywords: Cereal crops, abiotic stresses, food insecurity, molecular breeding, quantitative trait loci (QTLs), salinity, water stress.African Journal of Biotechnology, Vol 13(29) 2908-292
    corecore