82 research outputs found

    Comparative characterization of mesenchymal stem cells from eGFP transgenic and non-transgenic mice

    Get PDF
    Abstract Background Adipose derived- and bone marrow-derived murine mesenchymal stem cells (mMSCs) may be used to study stem cell properties in an in vivo setting for the purposes of evaluating therapeutic strategies that may have clinical applications in the future. If these cells are to be used for transplantation, the question arises of how to track the administered cells. One solution to this problem is to transplant cells with an easily identifiable genetic marker such as enhanced green fluorescent protein (eGFP). This protein is fluorescent and therefore does not require a chemical substrate for identification and can be visualized in living cells. This study seeks to characterize and compare adipose derived- and bone marrow-derived stem cells from C57Bl/6 mice and eGFP transgenic C57Bl/6 mice. Results The expression of eGFP does not appear to affect the ability to differentiate along adipogenic or osteogenic lineages; however it appears that the tissue of origin can influence differentiation capabilities. The presence of eGFP had no effect on cell surface marker expression, and mMSCs derived from both bone marrow and adipose tissue had similar surface marker profiles. There were no significant differences between transgenic and non-transgenic mMSCs. Conclusion Murine adipose derived and bone marrow derived mesenchymal stem cells from non-transgenic and eGFP transgenic C57Bl/6 mice have very similar characterization profiles. The availability of mesenchymal stem cells stably expressing a genetic reporter has important applications for the advancement of stem cell research.</p

    Do hypoxia/normoxia culturing conditions change the neuroregulatory profile of Wharton Jelly mesenchymal stem cells secretome?

    Get PDF
    Introduction: The use of human umbilical cord Wharton Jelly-derived mesenchymal stem cells (hWJ-MSCs) has been considered a new potential source for future safe applications in regenerative medicine. Indeed, the application of hWJ-MSCs into different animal models of disease, including those from the central nervous system, has shown remarkable therapeutic benefits mostly associated with their secretome. Conventionally, hWJ-MSCs are cultured and characterized under normoxic conditions (21 % oxygen tension), although the oxygen levels within tissues are typically much lower (hypoxic) than these standard culture conditions. Therefore, oxygen tension represents an important environmental factor that may affect the performance of mesenchymal stem cells in vivo. However, the impact of hypoxic conditions on distinct mesenchymal stem cell characteristics, such as the secretome, still remains unclear. Methods: In the present study, we have examined the effects of normoxic (21 % O2) and hypoxic (5 % O2) conditions on the hWJ-MSC secretome. Subsequently, we address the impact of the distinct secretome in the neuronal cell survival and differentiation of human neural progenitor cells. Results: The present data indicate that the hWJ-MSC secretome collected from normoxic and hypoxic conditions displayed similar effects in supporting neuronal differentiation of human neural progenitor cells in vitro. However, proteomic analysis revealed that the use of hypoxic preconditioning led to the upregulation of several proteins within the hWJ-MSC secretome. Conclusions: Our results suggest that the optimization of parameters such as hypoxia may lead to the development of strategies that enhance the therapeutic effects of the secretome for future regenerative medicine studies and applications. © 2015 Teixeira et al.Portuguese Foundation for Science and Technology (FCT) (Ciência 2007 program and IF Development Grant (AJS); and pre-doctoral fellowships to FGT (SFRH/69637/ 2010) and SIA (SFRH/BD/81495/2011); Canada Research Chairs (LAB) and a SSE Postdoctoral Fellowship (KMP); The National Mass Spectrometry Network (RNEM) (REDE/1506/REM/2005); co-funded by Programa Operacional Regional do Norte (ON.2 – O Novo Norte), ao abrigo do Quadro de Referência Estratégico Nacional (QREN), através do Fundo Europeu de Desenvolvimento Regional (FEDER).info:eu-repo/semantics/publishedVersio

    SPARC: a matricellular regulator of tumorigenesis

    Get PDF
    Although many clinical studies have found a correlation of SPARC expression with malignant progression and patient survival, the mechanisms for SPARC function in tumorigenesis and metastasis remain elusive. The activity of SPARC is context- and cell-type-dependent, which is highlighted by the fact that SPARC has shown seemingly contradictory effects on tumor progression in both clinical correlative studies and in animal models. The capacity of SPARC to dictate tumorigenic phenotype has been attributed to its effects on the bioavailability and signaling of integrins and growth factors/chemokines. These molecular pathways contribute to many physiological events affecting malignant progression, including extracellular matrix remodeling, angiogenesis, immune modulation and metastasis. Given that SPARC is credited with such varied activities, this review presents a comprehensive account of the divergent effects of SPARC in human cancers and mouse models, as well as a description of the potential mechanisms by which SPARC mediates these effects. We aim to provide insight into how a matricellular protein such as SPARC might generate paradoxical, yet relevant, tumor outcomes in order to unify an apparently incongruent collection of scientific literature

    Multi-criteria decision analysis with goal programming in engineering, management and social sciences: a state-of-the art review

    Full text link

    A Comparison of Neuroimaging Abnormalities in Multiple Sclerosis, Major Depression and Chronic Fatigue Syndrome (Myalgic Encephalomyelitis): is There a Common Cause?

    Get PDF

    Efficiency analysis in steel manufacturing with undesirable outputs

    No full text
    Sustainability and low-carbon economy strategies have been widely studied in recent years. However, researchers often ignore the effects of all energy, economic, and environmental factors. In the absence of financial support especially during the Covid-19 pandemic, it is critical for developing countries to find innovative and most effective policy mechanisms to achieve sustainability in a cost-effective manner. This requires identifying policies that can yield immediate progress towards several sustainable development goals (SDGs) collectively rather than sacrificing some goals to achieve others This study explore a steel company’s performance in Iran in which its success extremely hinges on the production volume and production line’s efficiency. A steel company includes a complex and interconnected structure leading to difficulty in identifying the inefficiency sources. The black-box production system is first broken into the internal production processes and then network data envelopment analysis is applied. Carbon emissions are considered as an undesirable output when assessing the production system The results show the company efficiency is greater than 90% in 60% of a year. Efficiency measures are in turn discussed to provide some insights in a way that helps operations managers increase manufacturer’s profitability along with gaining environmental sustainability

    Preparation and In Vitro Evaluation of a New Fentanyl Patch Based on Functional and Non-functional Pressure Sensitive Adhesives

    No full text
    In this study, some single-layer and double-layer transdermal drug delivery systems (TDDSs) with different functional and non-functional acrylic pressure-sensitive adhesives (PSAs) were prepared. For this purpose, fentanyl as a drug was used. The effects of PSAs type, single-layer and double-layer TDDSs on skin permeation and in vitro drug release from devices were evaluated using a hydrodynamically well-characterized Chien permeation system fitted with excised rat abdominal skin. The adhesion properties of devices such as peel strength and tack values were obtained as well. It was found that TDDS with –COOH functional PSA showed the lowest steady-state flux. Double-layer TDDS displayed a constant flux up to 72 h. In double- and single-layer devices after 1 and 3 h, respectively, drug release followed Higuchi’s kinetic model. Formulations with the highest percentage of –COOH functional PSA have displayed the lowest flux. The double-layer TDDSs with non-functional PSA demonstrated the suitable skin permeation rate close to Duragesic® TDDS and suitable adhesion properties
    corecore