51 research outputs found
Splash!: a prospective birth cohort study of the impact of environmental, social and family-level influences on child oral health and obesity related risk factors and outcomes
Background: Dental caries (decay) is the most prevalent disease of childhood. It is often left untreated and can impact negatively on general health, and physical, developmental, social and learning outcomes. Similar to other health issues, the greatest burden of dental caries is seen in those of low socio-economic position. In addition, a number of diet-related risk factors for dental caries are shared risk factors for the development of childhood obesity. These include high and frequent consumption of refined carbohydrates (predominately sugars), and soft drinks and other sweetened beverages, and low intake of (fluoridated) water. The prevalence of childhood obesity is also at a concerning level in most countries and there is an opportunity to determine interventions for addressing both of these largely preventable conditions through sustainable and equitable solutions. This study aims to prospectively examine the impact of drink choices on child obesity risk and oral health status.Methods/Design: This is a two-stage study using a mixed methods research approach. The first stage involves qualitative interviews of a sub-sample of recruited parents to develop an understanding of the processes involved in drink choice, and inform the development of the Discrete Choice Experiment analysis and the measurement instruments to be used in the second stage. The second stage involves the establishment of a prospective birth cohort of 500 children from disadvantaged communities in rural and regional Victoria, Australia (with and without water fluoridation). This longitudinal design allows measurement of changes in the child’s diet over time, exposure to fluoride sources including water, dental caries progression, and the risk of childhood obesity.Discussion: This research will provide a unique contribution to integrated health, education and social policy and program directions, by providing clearer policy relevant evidence on strategies to counter social and environmental factors which predispose infants and children to poor health, wellbeing and social outcomes; and evidence-based strategies to promote health and prevent disease through the adoption of healthier lifestyles and diet. Further, given the absence of evidence on the processes and effectiveness of contemporary policy implementation, such as community water fluoridation in rural and regional communities it’s approach and findings will be extremelyinformative.<br /
Large-Scale Crustal-Block-Extrusion During Late Alpine Collision
The crustal-scale geometry of the European Alps has been explained by a classical subduction-scenario comprising thrust-and-fold-related compressional wedge tectonics and isostatic rebound. However, massive blocks of crystalline basement (External-Crystalline-Massifs) vertically disrupt the upper-crustal wedge. In case of the Aar massif, top basement vertically rises for >12 km and peak metamorphic temperatures increase along an orogen-perpendicular direction from 250°C-450°C over horizontal distances of only <15 km (Innertkirchen-Grimselpass), suggesting exhumation of midcrustal rocks with increasing uplift component along steep vertical shear zones. Here we demonstrate that delamination of European lower crust during lithosphere mantle rollback migrates northward in time. Simultaneously, the Aar massif as giant upper crustal block extrudes by buoyancy forces, while substantial volumes of lower crust accumulate underneath. Buoyancy-driven deformation generates dense networks of steep reverse faults as major structures interconnected by secondary branches with normal fault component, dissecting the entire crust up to the surface. Owing to rollback fading, the component of vertical motion reduces and is replaced by a late stage of orogenic compression as manifest by north-directed thrusting. Buoyancy-driven vertical tectonics and modest late shortening, combined with surface erosion, result in typical topographic and metamorphic gradients, which might represent general indicators for final stages of continent-continent collisions
An autonomous molecular assembler for programmable chemical synthesis
Molecular machines that assemble polymers in a programmed sequence are fundamental to life. They are also an achievable goal of nanotechnology. Here, we report synthetic molecular machinery made from DNA which controls and records the formation of covalent bonds. We show that an autonomous cascade of DNA hybridization reactions can create oligomers, from building blocks linked by olefin or peptide bonds, with a sequence defined by a reconfigurable molecular program. The system can also be programmed to achieve combinatorial assembly. The sequence of assembly reactions, and thus the structure, of each oligomer synthesized is recorded in a DNA molecule which enables this information to be recovered by PCR amplification followed by DNA sequencing
- …