14 research outputs found

    Trypanosome Lytic Factor, an Antimicrobial High-Density Lipoprotein, Ameliorates Leishmania Infection

    Get PDF
    Innate immunity is the first line of defense against invading microorganisms. Trypanosome Lytic Factor (TLF) is a minor sub-fraction of human high-density lipoprotein that provides innate immunity by completely protecting humans from infection by most species of African trypanosomes, which belong to the Kinetoplastida order. Herein, we demonstrate the broader protective effects of human TLF, which inhibits intracellular infection by Leishmania, a kinetoplastid that replicates in phagolysosomes of macrophages. We show that TLF accumulates within the parasitophorous vacuole of macrophages in vitro and reduces the number of Leishmania metacyclic promastigotes, but not amastigotes. We do not detect any activation of the macrophages by TLF in the presence or absence of Leishmania, and therefore propose that TLF directly damages the parasite in the acidic parasitophorous vacuole. To investigate the physiological relevance of this observation, we have reconstituted lytic activity in vivo by generating mice that express the two main protein components of TLFs: human apolipoprotein L-I and haptoglobin-related protein. Both proteins are expressed in mice at levels equivalent to those found in humans and circulate within high-density lipoproteins. We find that TLF mice can ameliorate an infection with Leishmania by significantly reducing the pathogen burden. In contrast, TLF mice were not protected against infection by the kinetoplastid Trypanosoma cruzi, which infects many cell types and transiently passes through a phagolysosome. We conclude that TLF not only determines species specificity for African trypanosomes, but can also ameliorate an infection with Leishmania, while having no effect on T. cruzi. We propose that TLFs are a component of the innate immune system that can limit infections by their ability to selectively damage pathogens in phagolysosomes within the reticuloendothelial system

    Haptoglobin directly affects T cells and suppresses T helper cell type 2 cytokine release

    No full text
    T helper cell type 1 (Th1) and type 2 (Th2) immune responses are characterized by a different pattern of cytokine expression following T-cell activation. Alterations of the ratio of Th1 to Th2 cells are important determinants of susceptibility to viral and parasitic infections, allergies, anti-tumour responses, and autoimmunity. In this work we bring new evidence for an effect of haptoglobin (Hp), a positive acute-phase protein, on T-lymphocyte functions. We show that Hp specifically interacts with both resting and activated CD4(+) and CD8(+) T cells. This specific binding results in a strong suppression of induced T-cell proliferation. In addition, Hp exhibits a strong in vitro inhibitory effect on Th2 cytokine release, while the production of interferon-γ (IFN-γ) and interleukin-2 (IL-2) is only slightly inhibited at high Hp doses. As a result, the presence of Hp promotes Th1 activation over Th2 activation in vivo as evidenced in Hp-deficient mice. Anti-CD3 monoclonal antibody injection indeed resulted in predominant IL-4 production in Hp(−/−) mice, in contrast to predominant IFN-γ production in Hp(+/+) mice. We conclude that Hp plays a modulating role on the Th1/Th2 balance by promoting a dominant Th1 cellular response. This points to a role of acute-phase proteins in balancing immune responses

    Haptoglobin dampens endotoxin-induced inflammatory effects both in vitro and in vivo

    No full text
    We report that haptoglobin, an acute-phase protein produced by liver cells in response to interleukin-6 (IL-6), can modulate the inflammatory response induced by endotoxins. We provide evidence that haptoglobin has the ability to selectively antagonize lipopolysaccharide (LPS) effects in vitro by suppressing monocyte production of tumour necrosis factor-α, IL-10 and IL-12, while it fails to inhibit the production of IL-6, IL-8 and IL-1 receptor antagonist. In two animal models of LPS-induced bronchopulmonary hyperreactivity and endotoxic shock, haptoglobin knockout mice were more sensitive to LPS effects compared to their wild-type counterparts. The present data suggest that haptoglobin regulates monocyte activation following LPS stimulation. The increase in haptoglobin levels during an acute-phase reaction may generate a feedback effect which dampens the severity of cytokine release and protects against endotoxin-induced effects
    corecore