11 research outputs found

    Phenotypic and Transcriptomic Response of Auxotrophic Mycobacterium avium Subsp. paratuberculosis leuD Mutant under Environmental Stress

    Get PDF
    Mycobacterium avium subsp. paratuberculosis (MAP) is the causative agent of severe gastroenteritis in cattle. To gain a better understanding of MAP virulence, we investigated the role of leuD gene in MAP metabolism and stress response. For this, we have constructed an auxotrophic strain of MAP by deleting the leuD gene using allelic exchange. The wildtype and mutant strains were then compared for metabolic phenotypic changes using Biolog phenotype microarrays. The responses of both strains to physiologically relevant stress conditions were assessed using DNA microarrays. Transcriptomic data was then analyzed in the context of cellular metabolic pathways and gene networks. Our results showed that deletion of leuD gene has a global effect on both MAP phenotypic and transcriptome response. At the metabolic level, the mutant strain lost the ability to utilize most of the carbon, nitrogen, sulphur, phosphorus and nutrient supplements as energy source. At the transcriptome level, more than 100 genes were differentially expressed in each of the stress condition tested. Systems level network analysis revealed that the differentially expressed genes were distributed throughout the gene network, thus explaining the global impact of leuD deletion in metabolic phenotype. Further, we find that leuD deletion impacted metabolic pathways associated with fatty acids. We verified this by experimentally estimating the total fatty acid content of both mutant and wildtype. The mutant strain had 30% less fatty acid content when compared to wildtype, thus supporting the results from transcriptional and computational analyses. Our results therefore reveal the intricate connection between the metabolism and virulence in MAP

    Oxygen activation by P450(cin): Protein and substrate mutagenesis

    No full text
    A conserved threonine found in the majority of cytochromes P450 (P450s) has been implicated in the activation of dioxygen during the catalytic cycle. P450 (CYP176A) has been found to be an exception to this paradigm, where the conserved threonine has been replaced with an asparagine. Prior studies with a P450 N242A mutant established that the Asn-242 was not a functional replacement for the conserved threonine but was essential for the regio- and stereocontrol of the oxidation of cineole. To explore further how P450 controls the activation of the dioxygen in the absence of the conserved threonine, two concurrent lines of investigation were followed. Modification of P450 indicated that the Thr-243 was not involved in controlling the protonation of the hydroperoxy species. In addition, the N242T mutant did not enhance the rate and/or efficiency of catalytic turnover of cineole by P450. In parallel experiments, the substrate cineole was modified by removing the ethereal oxygen to produce camphane or 2,2-dimethylbicyclo[2.2.2]octane (cinane). An analogous experiment with P450 showed that a hydroxyl group on the substrate was vital, and in its absence catalytic turnover was effectively abolished. Catalytic turnover of P450 with either of these alternative substrates (camphane or cinane) revealed that in the absence of the ethereal oxygen there was still a significant amount of coupling of the NADPH-reducing equivalents to the formation of oxidised product. Again the substrate itself was not found to be important in controlling oxygen activation, in contrast to P450, but was shown to be essential for regio- and stereoselective substrate oxidation. Thus, it still remains unclear how dioxygen activation in the catalytic turnover of cineole by P450 is controlled

    Neutrino Oscillation Experiments at Nuclear Power Reactors

    No full text

    Evaluation of a Mycobacterium avium subsp. paratuberculosis leuD

    No full text
    Johne's disease (JD) is prevalent worldwide and has a significant impact on the global agricultural economy. In the present study, we evaluated the protective efficacy of a leuD (Δleud) mutant and gained insight into differential immune responses after challenge with virulent M. avium subsp. paratuberculosis in a caprine colonization model. The immune response and protective efficacy were compared with those of the killed vaccine Mycopar. In vitro stimulation of peripheral blood mononuclear cells with johnin purified protein derivative showed that Mycopar and ΔleuD generated similar levels of gamma interferon (IFN-γ) but significantly higher levels than unvaccinated and challenged phosphate-buffered saline controls. However, only with ΔleuD was the IFN-γ response maintained. Flow cytometric analysis showed that the increase in IFN-γ correlated with proliferation and activation (increased expression of CD25) of CD4, CD8, and γδT cells, but this response was significantly higher in ΔleuD-vaccinated animals at some time points after challenge. Both Mycopar and ΔleuD vaccines upregulated Th1/proinflammatory and Th17 cytokines and downregulated Th2/anti-inflammatory and regulatory cytokines at similar levels at almost all time points. However, significantly higher levels of IFN-γ (at weeks 26 and 30), interleukin-2 (IL-2; week 18), IL-1b (weeks 14 and 22), IL-17 (weeks 18 and 22), and IL-23 (week 18) and a significantly lower level of IL-10 (weeks 14 and 18) and transforming growth factor β (week 18) were detected in the ΔleuD-vaccinated group. Most importantly, ΔleuD elicited an immune response that significantly limited colonization of tissues compared to Mycopar upon challenge with wild-type M. avium subsp. paratuberculosis. In conclusion, the ΔleuD mutant is a promising vaccine candidate for development of a live attenuated vaccine for JD in ruminants
    corecore