316 research outputs found

    State based model of long-term potentiation and synaptic tagging and capture

    Get PDF
    Recent data indicate that plasticity protocols have not only synapse-specific but also more widespread effects. In particular, in synaptic tagging and capture (STC), tagged synapses can capture plasticity-related proteins, synthesized in response to strong stimulation of other synapses. This leads to long-lasting modification of only weakly stimulated synapses. Here we present a biophysical model of synaptic plasticity in the hippocampus that incorporates several key results from experiments on STC. The model specifies a set of physical states in which a synapse can exist, together with transition rates that are affected by high- and low-frequency stimulation protocols. In contrast to most standard plasticity models, the model exhibits both early- and late-phase LTP/D, de-potentiation, and STC. As such, it provides a useful starting point for further theoretical work on the role of STC in learning and memory

    Positional Cloning of a Type 2 Diabetes Quantitative Trait Locus; Tomosyn-2, a Negative Regulator of Insulin Secretion

    Get PDF
    We previously mapped a type 2 diabetes (T2D) locus on chromosome 16 (Chr 16) in an F2 intercross from the BTBR T (+) tf (BTBR) Lepob/ob and C57BL/6 (B6) Lepob/ob mouse strains. Introgression of BTBR Chr 16 into B6 mice resulted in a consomic mouse with reduced fasting plasma insulin and elevated glucose levels. We derived a panel of sub-congenic mice and narrowed the diabetes susceptibility locus to a 1.6 Mb region. Introgression of this 1.6 Mb fragment of the BTBR Chr 16 into lean B6 mice (B6.16BT36–38) replicated the phenotypes of the consomic mice. Pancreatic islets from the B6.16BT36–38 mice were defective in the second phase of the insulin secretion, suggesting that the 1.6 Mb region encodes a regulator of insulin secretion. Within this region, syntaxin-binding protein 5-like (Stxbp5l) or tomosyn-2 was the only gene with an expression difference and a non-synonymous coding single nucleotide polymorphism (SNP) between the B6 and BTBR alleles. Overexpression of the b-tomosyn-2 isoform in the pancreatic β-cell line, INS1 (832/13), resulted in an inhibition of insulin secretion in response to 3 mM 8-bromo cAMP at 7 mM glucose. In vitro binding experiments showed that tomosyn-2 binds recombinant syntaxin-1A and syntaxin-4, key proteins that are involved in insulin secretion via formation of the SNARE complex. The B6 form of tomosyn-2 is more susceptible to proteasomal degradation than the BTBR form, establishing a functional role for the coding SNP in tomosyn-2. We conclude that tomosyn-2 is the major gene responsible for the T2D Chr 16 quantitative trait locus (QTL) we mapped in our mouse cross. Our findings suggest that tomosyn-2 is a key negative regulator of insulin secretion

    Fellowship training:a qualitative study of scope and purpose across one department of medicine

    Get PDF
    BACKGROUND: Fellowship training follows certification in a primary specialty or subspecialty and focusses on distinct and advanced clinical and/or academic skills. This phase of medical education is growing in prevalence, but has been an "invisible phase of postgraduate training" lacking standards for education and accreditation, as well as funding. We aimed to explore fellowship programs and examine the reasons to host and participate in fellowship training, seeking to inform the future development of fellowship education. METHODS: During the 2013-14 academic year, we conducted interviews and focus groups to examine the current status of fellowship training from the perspectives of division heads, fellowship directors and current fellows at the Department of Medicine, University of Ottawa, Canada. Descriptive statistics were used to depict the prevailing status of fellowship training. A process of data reduction, data analysis and conclusions/verifications was performed to analyse the quantitative data. RESULTS: We interviewed 16 division heads (94%), 15 fellowship directors (63%) and 8 fellows (21%). We identified three distinct types of fellowships. Individualized fellowships focus on the career goals of the trainee and/or the recruitment goals of the division. Clinical fellowships focus on the attainment of clinical expertise over and above the competencies of residency. Research fellowships focus on research productivity. Participants identified a variety of reasons to offer fellowships: improve academic productivity; improve clinical productivity; share/develop enhanced clinical expertise; recruit future faculty members/attain an academic position; enhance the reputation of the division/department/trainee; and enhance the scholarly environment. CONCLUSIONS: Fellowships serve a variety of purposes which benefit both individual trainees as well as the academic enterprise. Fellowships can be categorized within a distinct taxonomy: individualized; clinical; and research. Each type of fellowship may serve a variety of purposes, and each may need distinct support and resources. Further research is needed to catalogue the operational requirements for hosting and undertaking fellowship training, and establish recommendations for educational and administrative policy and processes in this new phase of postgraduate education

    Environmental and vegetation controls on the spatial variability of CH4 emission from wet-sedge and tussock tundra ecosystems in the Arctic

    Get PDF
    Aims Despite multiple studies investigating the environmental controls on CH4 fluxes from arctic tundra ecosystems, the high spatial variability of CH4 emissions is not fully understood. This makes the upscaling of CH4 fluxes from plot to regional scale, particularly challenging. The goal of this study is to refine our knowledge of the spatial variability and controls on CH4 emission from tundra ecosystems. Methods CH4 fluxes were measured in four sites across a variety of wet-sedge and tussock tundra ecosystems in Alaska using chambers and a Los Gatos CO2 and CH4 gas analyser. Results All sites were found to be sources of CH4, with northern sites (in Barrow) showing similar CH4 emission rates to the southernmost site (ca. 300 km south, Ivotuk). Gross primary productivity (GPP), water level and soil temperature were the most important environmental controls on CH4 emission. Greater vascular plant cover was linked with higher CH4 emission, but this increased emission with increased vascular plant cover was much higher (86 %) in the drier sites, than the wettest sites (30 %), suggesting that transport and/or substrate availability were crucial limiting factors for CH4 emission in these tundra ecosystems. Conclusions Overall, this study provides an increased understanding of the fine scale spatial controls on CH4 flux, in particular the key role that plant cover and GPP play in enhancing CH4 emissions from tundra soils

    The combined effect of the T2DM susceptibility genes is an important risk factor for T2DM in non-obese Japanese: a population based case-control study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Type 2 diabetes mellitus (T2DM) is a complex endocrine and metabolic disorder. Recently, several genome-wide association studies (GWAS) have identified many novel susceptibility loci for T2DM, and indicated that there are common genetic causes contributing to the susceptibility to T2DM in multiple populations worldwide. In addition, clinical and epidemiological studies have indicated that obesity is a major risk factor for T2DM. However, the prevalence of obesity varies among the various ethnic groups. We aimed to determine the combined effects of these susceptibility loci and obesity/overweight for development of T2DM in the Japanese.</p> <p>Methods</p> <p>Single nucleotide polymorphisms (SNPs) in or near 17 susceptibility loci for T2DM, identified through GWAS in Caucasian and Asian populations, were genotyped in 333 cases with T2DM and 417 control subjects.</p> <p>Results</p> <p>We confirmed that the cumulative number of risk alleles based on 17 susceptibility loci for T2DM was an important risk factor in the development of T2DM in Japanese population (<it>P </it>< 0.0001), although the effect of each risk allele was relatively small. In addition, the significant association between an increased number of risk alleles and an increased risk of T2DM was observed in the non-obese group (<it>P </it>< 0.0001 for trend), but not in the obese/overweight group (<it>P </it>= 0.88 for trend).</p> <p>Conclusions</p> <p>Our findings indicate that there is an etiological heterogeneity of T2DM between obese/overweight and non-obese subjects.</p

    Reconstruction of one-dimensional chaotic maps from sequences of probability density functions

    Get PDF
    In many practical situations, it is impossible to measure the individual trajectories generated by an unknown chaotic system, but we can observe the evolution of probability density functions generated by such a system. The paper proposes for the first time a matrix-based approach to solve the generalized inverse Frobenius–Perron problem, that is, to reconstruct an unknown one-dimensional chaotic transformation, based on a temporal sequence of probability density functions generated by the transformation. Numerical examples are used to demonstrate the applicability of the proposed approach and evaluate its robustness with respect to constantly applied stochastic perturbations

    Prepatterning in the Stem Cell Compartment

    Get PDF
    The mechanism by which an apparently uniform population of cells can generate a heterogeneous population of differentiated derivatives is a fundamental aspect of pluripotent and multipotent stem cell behaviour. One possibility is that the environment and the differentiation cues to which the cells are exposed are not uniform. An alternative, but not mutually exclusive possibility is that the observed heterogeneity arises from the stem cells themselves through the existence of different interconvertible substates that pre-exist before the cells commit to differentiate. We have tested this hypothesis in the case of apparently homogeneous pluripotent human embryonal carcinoma (EC) stem cells, which do not follow a uniform pattern of differentiation when exposed to retinoic acid. Instead, they produce differentiated progeny that include both neuronal and non-neural phenotypes. Our results suggest that pluripotent NTERA2 stem cells oscillate between functionally distinct substates that are primed to select distinct lineages when differentiation is induced

    Disturbance Alters the Phylogenetic Composition and Structure of Plant Communities in an Old Field System

    Get PDF
    The changes in phylogenetic composition and structure of communities during succession following disturbance can give us insights into the forces that are shaping communities over time. In abandoned agricultural fields, community composition changes rapidly when a field is plowed, and is thought to reflect a relaxation of competition due to the elimination of dominant species which take time to re-establish. Competition can drive phylogenetic overdispersion, due to phylogenetic conservation of ‘niche’ traits that allow species to partition resources. Therefore, undisturbed old field communities should exhibit higher phylogenetic dispersion than recently disturbed systems, which should be relatively ‘clustered’ with respect to phylogenetic relationships. Several measures of phylogenetic structure between plant communities were measured in recently plowed areas and nearby ‘undisturbed’ sites. There was no difference in the absolute values of these measures between disturbed and ‘undisturbed’ sites. However, there was a difference in the ‘expected’ phylogenetic structure between habitats, leading to significantly lower than expected phylogenetic diversity in disturbed plots, and no difference from random expectation in ‘undisturbed’ plots. This suggests that plant species characteristic of each habitat are fairly evenly distributed on the shared species pool phylogeny, but that once the initial sorting of species into the two habitat types has occurred, the processes operating on them affect each habitat differently. These results were consistent with an analysis of correlation between phylogenetic distance and co-occurrence indices of species pairs in the two habitat types. This study supports the notion that disturbed plots are more clustered than expected, rather than ‘undisturbed’ plots being more overdispersed, suggesting that disturbed plant communities are being more strongly influenced by environmental filtering of conserved niche traits
    • …
    corecore