24 research outputs found

    Semiconductor Spintronics

    Full text link
    Spintronics refers commonly to phenomena in which the spin of electrons in a solid state environment plays the determining role. In a more narrow sense spintronics is an emerging research field of electronics: spintronics devices are based on a spin control of electronics, or on an electrical and optical control of spin or magnetism. This review presents selected themes of semiconductor spintronics, introducing important concepts in spin transport, spin injection, Silsbee-Johnson spin-charge coupling, and spindependent tunneling, as well as spin relaxation and spin dynamics. The most fundamental spin-dependent nteraction in nonmagnetic semiconductors is spin-orbit coupling. Depending on the crystal symmetries of the material, as well as on the structural properties of semiconductor based heterostructures, the spin-orbit coupling takes on different functional forms, giving a nice playground of effective spin-orbit Hamiltonians. The effective Hamiltonians for the most relevant classes of materials and heterostructures are derived here from realistic electronic band structure descriptions. Most semiconductor device systems are still theoretical concepts, waiting for experimental demonstrations. A review of selected proposed, and a few demonstrated devices is presented, with detailed description of two important classes: magnetic resonant tunnel structures and bipolar magnetic diodes and transistors. In most cases the presentation is of tutorial style, introducing the essential theoretical formalism at an accessible level, with case-study-like illustrations of actual experimental results, as well as with brief reviews of relevant recent achievements in the field.Comment: tutorial review; 342 pages, 132 figure

    Participeren in de digitale wereld

    No full text
    In deze tekst wordt een beschrijving gegeven van het fictieve bureau voor maatschappelijk werk 'de toren' en de mate waarin maatschappelijk werkers in toenemende mate gebruik maken van ict in de hulp- en dienstverlening. Daarbij wordt ingegaan op de mogelijkheden van e-mail in de hulpverlening, het verwijzen naar internet voor informatie en advies, het gebruik van websites voor specifieke doelgroepen en het gebruik van internet als informatiebron over maatschappelijke ontwikkelingen

    Preoperative fasting protects mice against hepatic ischemia/reperfusion injury: Mechanisms and effects on liver regeneration

    Get PDF
    We show that brief periods of fasting induce functional changes similar to those induced by long-term dietary restriction in mice, and these changes include protection from ischemia/reperfusion (I/R) injury. In this study, we investigated the mechanisms of protection induced by fasting, and we determined the effect on liver regeneration after partial hepatectomy. Partial hepatic ischemia (75 minutes) was induced in ad libitum fed mice and in 1- to 3-day-fasted mice, and one-third or two-thirds hepatectomy was performed in ad libitum fed mice and 3-day-fasted mice. Preoperative fasting for 2 or 3 days significantly decreased hepatocellular I/R injury. Hepatic gene expression of heme oxygenase 1 (HO-1), superoxide dismutase 2 (SOD2), glutathione peroxidase 1 (Gpx1), and glutathione reductase (GSR) was significantly up-regulated in 3-day-fasted mice at the baseline and 6 hours after reperfusion. After reperfusion, p-selectin and interleukin-6 (IL-6) levels were significantly lower, and superoxide radical generation, lipid peroxidation, and neutrophil influx were significantly attenuated in 3-day-fasted mice. Preoperative fasting did not affect liver regeneration after one-third hepatectomy. Hepatic gene expression of IL-6 and transforming growth factor β1 was significantly higher in 3-day-fasted mice before and after one-third hepatectomy. Tumor necrosis factor α expression significantly increased after one-third hepatectomy in 3-day-fasted mice. After a 3-day fast and two-thirds hepatectomy, liver regeneration and subsequent postoperative recovery were compromised. In conclusion, up-regulation of the stress response gene HO-1 and the antioxidant enzymes SOD2, Gpx1, and GSR at the baseline and a better response after reperfusion likely underlie the protection induced by fasting against hepatic I/R injury. Preoperative fasting may be a promising new strategy for protecting the liver against I/R injury during liver transplantation and minor liver resections, although its effect on extended hepatectomy warrants further exploration. Liver Transpl 17:695-704, 2011
    corecore