60 research outputs found

    Serial decline in lung volume parameters on computed tomography (CT) predicts outcome in idiopathic pulmonary fibrosis (IPF)

    Get PDF
    OBJECTIVES: In patients with IPF, this study aimed (i) to examine the relationship between serial change in CT parameters of lung volume and lung function, (ii) to identify the prognostic value of serial change in CT parameters of lung volume, and (iii) to define a threshold for serial change in CT markers of lung volume that optimally captures disease progression. METHODS: Serial CTs were analysed for progressive volume loss or fibrosis progression in 81 IPF patients (66 males, median age = 67 years) with concurrent forced vital capacity (FVC) (median follow-up 12 months, range 6-23 months). Serial CT measurements of volume loss comprised oblique fissure posterior retraction distance (OFPRD), aortosternal distance (ASD), lung height corrected for body habitus (LH), and automated CT-derived total lung volumes (ALV) (measured using commercially available software). Fibrosis progression was scored visually. Serial changes in CT markers and FVC were compared using regression analysis, and evaluated against mortality using Cox proportional hazards. RESULTS: There were 58 deaths (72%, median survival = 17 months). Annual % change in ALV was most significantly related to annual % change in FVC (R2 = 0.26, p < 0.0001). On multivariate analysis, annual % change in ASD predicted mortality (HR = 0.97, p < 0.001), whereas change in FVC did not. A 25% decline in annual % change in ASD best predicted mortality, superior to 10% decline in FVC and fibrosis progression. CONCLUSION: In IPF, serial decline in CT markers of lung volume and, specifically, annualised 25% reduction in aortosternal distance provides evidence of disease progression, not always identified by FVC trends or changes in fibrosis extent. KEY POINTS: • Serial decline in automated and surrogate markers of lung volume on CT corresponds to changes in FVC. • Annualised reductions in the distance between ascending aorta and posterior border of the sternum on CT predict mortality beyond annualised percentage change in FVC

    Relationship between fibroblastic foci profusion and high resolution CT morphology in fibrotic lung disease

    Get PDF
    Background Fibroblastic foci profusion on histopathology and severity of traction bronchiectasis on highresolution computed tomography (HRCT) have been shown to be predictors of mortality in patients with idiopathic pulmonary fibrosis (IPF). The aim of this study was to investigate the relationship between fibroblastic foci (FF) profusion and HRCT patterns in patients with a histopathologic diagnosis of usual interstitial pneumonia (UIP), fibrotic non-specific interstitial pneumonia (NSIP) and chronic hypersensitivity pneumonitis (CHP). Methods The HRCT scans of 162 patients with a histopathologic diagnosis of UIP or fibrotic NSIP (n = 162) were scored on extent of groundglass opacification, reticulation, honeycombing, emphysema and severity of traction bronchiectasis. For each patient, a fibroblastic foci profusion score based on histopathologic appearances was assigned. Relationships between extent of fibroblastic foci and individual HRCT patterns were investigated using univariate correlation analysis and multivariate linear regression. Results Increasing extent of reticulation (P < 0.0001) and increasing severity of traction bronchiectasis (P < 0.0001) were independently associated with increasing FF score within the entire cohort. Within individual multidisciplinary team diagnosis subgroups, the only significant independent association with FF score was severity of traction bronchiectasis in patients with idiopathic pulmonary fibrosis (IPF)/UIP (n = 66, r2 = 0.19, P < 0.0001) and patients with chronic hypersensitivity pneumonitis (CHP) (n = 49, r2 = 0.45, P < 0.0001). Furthermore, FF score had the strongest association with severity of traction bronchiectasis in patients with IPF (r2 = 0.34, P < 0.0001) and CHP (r2 = 0.35, P < 0.0001). There was no correlation between FF score and severity of traction bronchiectasis in patients with fibrotic NSIP. Global disease extent had the strongest association with severity of traction bronchiectasis in patients with fibrotic NSIP (r2 = 0.58, P < 0.0001). Conclusion In patients with fibrotic lung disease, profusion of fibroblastic foci is strikingly related to the severity of traction bronchiectasis, particularly in IPF and CHP. This may explain the growing evidence that traction bronchiectasis is a predictor of mortality in several fibrotic lung diseases

    Mortality prediction in idiopathic pulmonary fibrosis: evaluation of computer-based CT analysis with conventional severity measures

    Get PDF
    Computer-based computed tomography (CT) analysis can provide objective quantitation of disease in idiopathic pulmonary fibrosis (IPF). A computer algorithm, CALIPER, was compared with conventional CT and pulmonary function measures of disease severity for mortality prediction.CT and pulmonary function variables (forced expiratory volume in 1 s, forced vital capacity, diffusion capacity of the lung for carbon monoxide, transfer coefficient of the lung for carbon monoxide and composite physiologic index (CPI)) of 283 consecutive patients with a multidisciplinary diagnosis of IPF were evaluated against mortality. Visual and CALIPER CT features included total extent of interstitial lung disease, honeycombing, reticular pattern, ground glass opacities and emphysema. In addition, CALIPER scored pulmonary vessel volume (PVV) while traction bronchiectasis and consolidation were only scored visually. A combination of mortality predictors was compared with the Gender, Age, Physiology model.On univariate analyses, all visual and CALIPER-derived interstitial features and functional indices were predictive of mortality to a 0.01 level of significance. On multivariate analysis, visual CT parameters were discarded. Independent predictors of mortality were CPI (hazard ratio (95% CI) 1.05 (1.02-1.07), p<0.001) and two CALIPER parameters: PVV (1.23 (1.08-1.40), p=0.001) and honeycombing (1.18 (1.06-1.32), p=0.002). A three-group staging system derived from this model was powerfully predictive of mortality (2.23 (1.85-2.69), p<0.0001).CALIPER-derived parameters, in particular PVV, are more accurate prognostically than traditional visual CT scores. Quantitative tools such as CALIPER have the potential to improve staging systems in IPF

    Serial automated quantitative CT analysis in idiopathic pulmonary fibrosis: functional correlations and comparison with changes in visual CT scores

    Get PDF
    OBJECTIVES: To determine whether computer-based CT quantitation of change can improve on visual change quantification of parenchymal features in IPF. METHODS: Sixty-six IPF patients with serial CT imaging (6-24 months apart) had CT features scored visually and with a computer software tool: ground glass opacity, reticulation and honeycombing (all three variables summed as interstitial lung disease extent [ILD]) and emphysema. Pulmonary vessel volume (PVV) was estimated by computer only. Relationships between changes in CT features and forced vital capacity (FVC) were examined using univariate and multivariate linear regression analyses. RESULTS: On univariate analysis, changes in computer variables demonstrated stronger linkages to FVC change than changes in visual scores (CALIPER ILD:R2=0.53, p<0.0001; Visual ILD:R2=0.16, p=0.001). PVV increase correlated most strongly with relative FVC change (R2=0.57). When PVV constituents (vessel size and location) were examined, an increase in middle zone vessels linked most strongly to FVC decline (R2=0.57) and was independent of baseline disease severity (characterised by CT fibrosis extent, FVC, or DLco). CONCLUSIONS: An increase in PVV, specifically an increase in middle zone lung vessels, was the strongest CT determinant of FVC decline in IPF and was independent of baseline disease severity. KEY POINTS: • Computer analysis improves on visual CT scoring in evaluating deterioration on CT • Increasing pulmonary vessel volume is the strongest CT predictor of functional deterioration • Increasing pulmonary vessel volume predicts functional decline independent of baseline disease severity

    Automated Quantitative Computed Tomography Versus Visual Computed Tomography Scoring in Idiopathic Pulmonary Fibrosis: Validation Against Pulmonary Function

    Get PDF
    PURPOSE: The aim of the study was to determine whether a novel computed tomography (CT) postprocessing software technique (CALIPER) is superior to visual CT scoring as judged by functional correlations in idiopathic pulmonary fibrosis (IPF). MATERIALS AND METHODS: A total of 283 consecutive patients with IPF had CT parenchymal patterns evaluated quantitatively with CALIPER and by visual scoring. These 2 techniques were evaluated against: forced expiratory volume in 1 second (FEV1), forced vital capacity (FVC), diffusing capacity for carbon monoxide (DLco), carbon monoxide transfer coefficient (Kco), and a composite physiological index (CPI), with regard to extent of interstitial lung disease (ILD), extent of emphysema, and pulmonary vascular abnormalities. RESULTS: CALIPER-derived estimates of ILD extent demonstrated stronger univariate correlations than visual scores for most pulmonary function tests (PFTs): (FEV1: CALIPER R=0.29, visual R=0.18; FVC: CALIPER R=0.41, visual R=0.27; DLco: CALIPER R=0.31, visual R=0.35; CPI: CALIPER R=0.48, visual R=0.44). Correlations between CT measures of emphysema extent and PFTs were weak and did not differ significantly between CALIPER and visual scoring. Intriguingly, the pulmonary vessel volume provided similar correlations to total ILD extent scored by CALIPER for FVC, DLco, and CPI (FVC: R=0.45; DLco: R=0.34; CPI: R=0.53). CONCLUSIONS: CALIPER was superior to visual scoring as validated by functional correlations with PFTs. The pulmonary vessel volume, a novel CALIPER CT parameter with no visual scoring equivalent, has the potential to be a CT feature in the assessment of patients with IPF and requires further exploration

    Functional and prognostic effects when emphysema complicates idiopathic pulmonary fibrosis

    Get PDF
    This study aimed to investigate whether the combination of fibrosis and emphysema has a greater effect than the sum of its parts on functional indices and outcome in idiopathic pulmonary fibrosis (IPF), using visual and computer-based (CALIPER) computed tomography (CT) analysis.Consecutive patients (n=272) with a multidisciplinary IPF diagnosis had the extent of interstitial lung disease (ILD) scored visually and by CALIPER. Visually scored emphysema was subcategorised as isolated or mixed with fibrotic lung. The CT scores were evaluated against functional indices forced vital capacity (FVC), diffusing capacity of the lungs for carbon monoxide (DLCO), transfer coefficient of the lung for carbon monoxide (KCO), composite physiologic index (CPI)) and mortality.The presence and extent of emphysema had no impact on survival. Results were maintained following correction for age, gender, smoking status and baseline severity using DLCO, and combined visual emphysema and ILD extent. Visual emphysema quantitation indicated that relative preservation of lung volumes (FVC) resulted from tractionally dilated airways within fibrotic lung, ventilating areas of admixed emphysema (p<0.0001), with no independent effect on FVC from isolated emphysema. Conversely, only isolated emphysema (p<0.0001) reduced gas transfer (DLCO).There is no prognostic impact of emphysema in IPF, beyond that explained by the additive extents of both fibrosis and emphysema. With respect to the location of pulmonary fibrosis, emphysema distribution determines the functional effects of emphysema

    Automated computer-based CT stratification as a predictor of outcome in hypersensitivity pneumonitis

    Get PDF
    BACKGROUND: Hypersensitivity pneumonitis (HP) has a variable clinical course. Modelling of quantitative CALIPER-derived CT data can identify distinct disease phenotypes. Mortality prediction using CALIPER analysis was compared to the interstitial lung disease gender, age, physiology (ILD-GAP) outcome model. METHODS: CALIPER CT analysis of parenchymal patterns in 98 consecutive HP patients was compared to visual CT scoring by two radiologists. Functional indices including forced vital capacity (FVC) and diffusion capacity for carbon monoxide (DLco) in univariate and multivariate Cox mortality models. Automated stratification of CALIPER scores was evaluated against outcome models. RESULTS: Univariate predictors of mortality included visual and CALIPER CT fibrotic patterns, and all functional indices. Multivariate analyses identified only two independent predictors of mortality: CALIPER reticular pattern (p = 0.001) and DLco (p < 0.0001). Automated stratification distinguished three distinct HP groups (log-rank test p < 0.0001). Substitution of automated stratified groups for FVC and DLco in the ILD-GAP model demonstrated no loss of model strength (C-Index = 0.73 for both models). Model strength improved when automated stratified groups were combined with the ILD-GAP model (C-Index = 0.77). CONCLUSIONS: CALIPER-derived variables are the strongest CT predictors of mortality in HP. Automated CT stratification is equivalent to functional indices in the ILD-GAP model for predicting outcome in HP. KEY POINTS: • Computer CT analysis better predicts mortality than visual CT analysis in HP. • Quantitative CT analysis is equivalent to functional indices for prognostication in HP. • Prognostication using the ILD-GAP model improves when combined with quantitative CT analysis

    Pulmonary hypertension in interstitial lung disease: Limitations of echocardiography compared to cardiac catheterization

    Get PDF
    BACKGROUND AND OBJECTIVE: In interstitial lung disease (ILD), pulmonary hypertension (PH) is a major adverse prognostic determinant. Transthoracic echocardiography (TTE) is the most widely used tool when screening for PH, although discordance between TTE and right heart catheter (RHC) measured pulmonary haemodynamics is increasingly recognized. We evaluated the predictive utility of the updated European Society of Cardiology/European Respiratory Society (ESC/ERS) TTE screening recommendations against RHC testing in a large, well-characterized ILD cohort. METHODS: Two hundred and sixty-five consecutive patients with ILD and suspected PH underwent comprehensive assessment, including RHC, between 2006 and 2012. ESC/ERS recommended tricuspid regurgitation (TR) velocity thresholds for assigning high (>3.4 m/s), intermediate (2.9-3.4 m/s) and low (3.4 m/s, and excluded PH in 60% of ILD subjects with a TR velocity <2.8 m/s. Thus, the ESC/ERS guidelines misclassified 40% of subjects as 'low probability' of PH, when PH was confirmed on subsequent RHC. Evaluating alternative TR velocity thresholds for assigning a low probability of PH did not significantly improve the ability of TR velocity to exclude a diagnosis of PH. CONCLUSION: In patients with ILD and suspected PH, currently recommended ESC/ERS TR velocity screening thresholds were associated with a high positive predictive value (86%) for confirming PH, but were of limited value in excluding PH, with 40% of patients misclassified as low probability when PH was confirmed at subsequent RHC

    Cardiopulmonary assessment of patients with systemic sclerosis for hematopoietic stem cell transplantation: recommendations from the European Society for Blood and Marrow Transplantation Autoimmune Diseases Working Party and collaborating partners.

    Get PDF
    Systemic sclerosis (SSc) is a rare disabling autoimmune disease with a similar mortality to many cancers. Two randomized controlled trials of autologous hematopoietic stem cell transplantation (AHSCT) for SSc have shown significant improvement in organ function, quality of life and long-term survival compared to standard therapy. However, transplant-related mortality (TRM) ranged from 3-10% in patients undergoing HSCT. In SSc, the main cause of non-transplant and TRM is cardiac related. We therefore updated the previously published guidelines for cardiac evaluation, which should be performed in dedicated centers with expertize in HSCT for SSc. The current recommendations are based on pre-transplant cardiopulmonary evaluations combining pulmonary function tests, echocardiography, cardiac magnetic resonance imaging and invasive hemodynamic testing, initiated at Northwestern University (Chicago) and subsequently discussed and endorsed within the EBMT ADWP in 2016

    Radiological honeycombing: pitfalls in idiopathic pulmonary fibrosis diagnosis

    No full text
    • …
    corecore