18,608 research outputs found
Synthesis of silicon doped SrMO3 (M=Mn, Co): stabilization of the cubic perovskite and enhancement in conductivity
In this paper we report the successful incorporation of silicon into SrMO3 (M=Co, Mn) leading to a structural change from a hexagonal to a cubic perovskite. For M=Co, the cubic phase was observed for low doping levels (3%), and these doped phases showed very high conductivities ( up to ≈350 Scm-1 at room temperature). However, annealing studies at intermediate temperatures (700-800○C), indicated that the cubic phase was metastable with a gradual transformation to a hexagonal cell on annealing. Further work showed that co-doping with Fe resulted in improved stability of the cubic phase; a composition SrCo0.85Fe0.1Si0.05O3-y displayed good stability at intermediate temperatures and a high conductivity (≈150 Scm-1 at room temperature).\ud
\ud
For M=Mn, the work showed that higher substitution levels were required to form the cubic perovskite (≈15% Si doping), although in these cases the phases were shown to be stable to annealing at intermediate temperatures. Conductivity measurements again showed an enhancement in the conductivity on Si doping, although the conductivities were lower (≈0.3 – 14 Scm-1 in the range 20- 800○C) than the cobalt containing systems. The conductivities of both systems suggest potential for use as cathode materials in solid oxide fuel cells
Treatments of the exchange energy in density-functional theory
Following a recent work [Gal, Phys. Rev. A 64, 062503 (2001)], a simple
derivation of the density-functional correction of the Hartree-Fock equations,
the Hartree-Fock-Kohn-Sham equations, is presented, completing an integrated
view of quantum mechanical theories, in which the Kohn-Sham equations, the
Hartree-Fock-Kohn-Sham equations and the ground-state Schrodinger equation
formally stem from a common ground: density-functional theory, through its
Euler equation for the ground-state density. Along similar lines, the Kohn-Sham
formulation of the Hartree-Fock approach is also considered. Further, it is
pointed out that the exchange energy of density-functional theory built from
the Kohn-Sham orbitals can be given by degree-two homogeneous N-particle
density functionals (N=1,2,...), forming a sequence of degree-two homogeneous
exchange-energy density functionals, the first element of which is minus the
classical Coulomb-repulsion energy functional.Comment: 19 pages; original manuscript from 2001 (v1) revised for publication,
with presentation substantially improved, some errors corrected, plus an
additional summarizing figure (Appendix B) include
Spin state transition in LaCoO3 by variational cluster approximation
The variational cluster approximation is applied to the calculation of
thermodynamical quantities and single-particle spectra of LaCoO3. Trial
self-energies and the numerical value of the Luttinger-Ward functional are
obtained by exact diagonalization of a CoO6 cluster. The VCA correctly predicts
LaCoO3 as a paramagnetic insulator and a gradual and relatively smooth increase
of the occupation of high-spin Co3+ ions causes the temperature dependence of
entropy and magnetic susceptibility. The single particle spectral function
agrees well with experiment, the experimentally observed temperature dependence
of photoelectron spectra is reproduced satisfactorily. Remaining discrepancies
with experiment highlight the importance of spin orbit coupling and local
lattice relaxation.Comment: Revtex file with 10 eps figure
Joint effect of lattice interaction and potential fluctuation in colossal magnetoresistive manganites
Taking into account both the Jahn-Teller lattice distortion and the on-site
electronic potential fluctuations in the orbital-degenerated double-exchange
model, in which both the core-spin and the lattice distortion are treated
classically, we investigate theoretically the metal-insulator transition (MIT)
in manganites by considering the electronic localization effect. An inverse
matrix method is developed for calculation in which we use the inverse of the
transfer matrix to obtain the localization length. We find that within
reasonable range of parameters, both the lattice effect and the potential
fluctuation are responsible to the occurrence of the MIT. The role of the
orbital configuration is also discussed.Comment: 4 figure
Traveling sealer for contoured table Patent
Sealing apparatus for joining two pieces of frangible material
Correlated band structure of NiO, CoO and MnO by variational cluster approximation
The variational cluster approximation proposed by Potthoff is applied to the
calculation of the single-particle spectral function of the transition metal
oxides MnO, CoO and NiO. Trial self-energies and the numerical value of the
Luttinger-Ward functional are obtained by exact diagonalization of a
TMO6-cluster. The single-particle parameters of this cluster serve as
variational parameters to construct a stationary point of the grand potential
of the lattice system. The stationary point is found by a crossover procedure
which allows to go continuously from an array of disconnected clusters to the
lattice system. The self-energy is found to contain irrelevant degrees of
freedom which have marginal impact on the grand potential and which need to be
excluded to obtain meaningful results. The obtained spectral functions are in
good agreement with experimental data.Comment: 14 pages, 17 figure
Dzyaloshinski-Moriya interactions in the kagome lattice
The kagom\'e lattice exhibits peculiar magnetic properties due to its
strongly frustated cristallographic structure, based on corner sharing
triangles. For nearest neighbour antiferromagnetic Heisenberg interactions
there is no Neel ordering at zero temperature both for quantum and classical s
pins. We show that, due to the peculiar structure, antisymmetric
Dzyaloshinsky-Moriya interactions ()
are present in this latt ice. In order to derive microscopically this
interaction we consider a set of localized d-electronic states. For classical
spins systems, we then study the phase diagram (T, D/J) through mean field
approximation and Monte-Carlo simulations and show that the antisymmetric
interaction drives this system to ordered states as soon as this interaction is
non zero. This mechanism could be involved to explain the magnetic structure of
Fe-jarosites.Comment: 4 pages, 2 figures. Presented at SCES 200
Spin swap vs. double occupancy in quantum gates
We propose an approach to realize quantum gates with electron spins localized
in a semiconductor that uses double occupancy to advantage. With a fast
(non-adiabatic) time control of the tunnelling, the probability of double
occupancy is first increased and then brought back exactly to zero. The quantum
phase built in this process can be exploited to realize fast quantum
operations. We illustrate the idea focusing on the half-swap operation, which
is the key two-qubit operation needed to build a CNOT gate.Comment: 5 pages, 2 figure
Electron corrected Lorentz forces in solids and molecules in magnetic field
We describe the effective Lorentz forces on the ions of a generic insulating
system in an magnetic field, in the context of Born-Oppenheimer ab-initio
molecular dynamics. The force on each ion includes an important contribution of
electronic origin, which depends explicitly on the velocity of all other ions.
It is formulated in terms of a Berry curvature, in a form directly suitable for
future first principles classical dynamics simulations based {\it e.g.,} on
density functional methods. As a preliminary analytical demonstration we
present the dynamics of an H molecule in a field of intermediate strength,
approximately describing the electrons through Slater's variational
wavefunction.Comment: 5 pages, 2 figures; to appear in Phys. Rev.
- …
