2,929 research outputs found

    Ca isotope constraints on chemical weathering processes: Evidence from headwater in the Changjiang River, China

    Get PDF
    This study aims to clarify the relationship between chemical weathering of rocks and the carbon budget of rivers and better understand the weathering mechanisms of plateau watersheds. We chose to study the Jinsha River, which originates from the Tibetan Plateau and also is in the upper reaches of the Changjiang River. Analysis of hydrochemistry, radiogenic strontium isotope and stable calcium isotopes were conducted of the Jinsha River water samples, which were collected along its mainstream and main tributaries in the summer. The results show that the water chemistry of the mainstream waters is dominated by evaporite weathering, which have low 87Sr/86Sr values (0.7098–0.7108) and wide range of Sr contents (2.70–9.35 μmol/L). In contrast, tributaries of the Jinsha River have higher 87Sr/86Sr (0.7090–0.7157) and lower Sr contents (∼1 μmol/L). Moreover, the Ca isotopic compositions in the mainstream (0.87–1.11‰) are heavier than the tributaries (0.68–0.88‰) and could not be fully explained by the conventional mixing of different sources. We suggest that secondary carbonate precipitation fractionates Ca isotopes in the Jinsha River, and fractionation factors are between 0.99935 and 0.99963. At least 66% of Ca was removed in the mainstream of the Jinsha River through secondary mineral precipitation, and the average value is ∼35% in the tributaries. The results highlight that evaporite weathering results in more carbonate precipitation influencing Ca transportation and cycling in the riverine system constrained by stable Ca isotopic compositions and water chemistry

    Significant Impact of Sequence Variations in the Nucleoprotein on CD8 T Cell-Mediated Cross-Protection against Influenza A Virus Infections

    Get PDF
    Background: Memory CD8 T cells to influenza A viruses are widely detectable in healthy human subjects and broadly cross-reactive for serologically distinct influenza A virus subtypes. However, it is not clear to what extent such pre-existing cellular immunity can provide cross-subtype protection against novel emerging influenza A viruses. Methodology/Principal: Findings We show in the mouse model that naturally occurring sequence variations of the conserved nucleoprotein of the virus significantly impact cross-protection against lethal disease in vivo. When priming and challenge viruses shared identical sequences of the immunodominant, protective NP366/Db epitope, strong cross-subtype protection was observed. However, when they did not share complete sequence identity in this epitope, cross-protection was considerably reduced. Contributions of virus-specific antibodies appeared to be minimal under these circumstances. Detailed analysis revealed that the magnitude of the memory CD8 T cell response triggered by the NP366/Db variants was significantly lower than those triggered by the homologous NP366/Db ligand. It appears that strict specificity of a dominant public TCR to the original NP366/Db ligand may limit the expansion of cross-reactive memory CD8 T cells to the NP366/Db variants. Conclusions/Significance: Pre-existing CD8 T cell immunity may provide substantial cross-protection against heterosubtypic influenza A viruses, provided that the priming and the subsequent challenge viruses share the identical sequences of the immunodominant, protective CTL epitopes

    Domain wall brane in squared curvature gravity

    Full text link
    We suggest a thick braneworld model in the squared curvature gravity theory. Despite the appearance of higher order derivatives, the localization of gravity and various bulk matter fields is shown to be possible. The existence of the normalizable gravitational zero mode indicates that our four-dimensional gravity is reproduced. In order to localize the chiral fermions on the brane, two types of coupling between the fermions and the brane forming scalar is introduced. The first coupling leads us to a Schr\"odinger equation with a volcano potential, and the other a P\"oschl-Teller potential. In both cases, the zero mode exists only for the left-hand fermions. Several massive KK states of the fermions can be trapped on the brane, either as resonant states or as bound states.Comment: 18 pages, 5 figures and 1 table, references added, improved version to be published in JHE

    Neonatal umbilical cord blood transplantation halts skeletal disease progression in the murine model of MPS-I

    Get PDF
    Umbilical cord blood (UCB) is a promising source of stem cells to use in early haematopoietic stem cell transplantation (HSCT) approaches for several genetic diseases that can be diagnosed at birth. Mucopolysaccharidosis type I (MPS-I) is a progressive multi-system disorder caused by deficiency of lysosomal enzyme α-L-iduronidase, and patients treated with allogeneic HSCT at the onset have improved outcome, suggesting to administer such therapy as early as possible. Given that the best characterized MPS-I murine model is an immunocompetent mouse, we here developed a transplantation system based on murine UCB. With the final aim of testing the therapeutic efficacy of UCB in MPS-I mice transplanted at birth, we first defined the features of murine UCB cells and demonstrated that they are capable of multi-lineage haematopoietic repopulation of myeloablated adult mice similarly to bone marrow cells. We then assessed the effectiveness of murine UCB cells transplantation in busulfan-conditioned newborn MPS-I mice. Twenty weeks after treatment, iduronidase activity was increased in visceral organs of MPS-I animals, glycosaminoglycans storage was reduced, and skeletal phenotype was ameliorated. This study explores a potential therapy for MPS-I at a very early stage in life and represents a novel model to test UCB-based transplantation approaches for various diseases

    CAR-T cell. the long and winding road to solid tumors

    Get PDF
    Adoptive cell therapy of solid tumors with reprogrammed T cells can be considered the "next generation" of cancer hallmarks. CAR-T cells fail to be as effective as in liquid tumors for the inability to reach and survive in the microenvironment surrounding the neoplastic foci. The intricate net of cross-interactions occurring between tumor components, stromal and immune cells leads to an ineffective anergic status favoring the evasion from the host's defenses. Our goal is hereby to trace the road imposed by solid tumors to CAR-T cells, highlighting pitfalls and strategies to be developed and refined to possibly overcome these hurdles

    Site-directed mutagenesis reveals a unique requirement for tyrosine residues in IL-7Rα and TSLPR cytoplasmic domains in TSLP-dependent cell proliferation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Thymic stromal lymphopoietin (TSLP) is an interleukin-7 (IL-7) like cytokine, which plays an important role in the regulation of immune responses to allergens. TSLP binds to a heterodimeric receptor complex composed of the IL-7 receptor α chain (IL-7Rα) and the TSLP receptor (TSLPR, also known as CRLF2). It has previously been suggested that the lone tyrosine residue in the mouse TSLPR cytoplasmic domain is required for cell proliferation using chimeric receptor systems. Also the role of tyrosine residues in the IL-7Rα cytoplasmic domain in TSLP signaling has not yet been investigated. We undertook a systematic analysis to test the role of tyrosine residues of both the IL-7Rα and the TSLPR in inducing cell proliferation in a growth factor dependent cell line, Ba/F3.</p> <p>Results</p> <p>A multiple sequence alignment of the IL-7Rα and TSLPR cytoplasmic domains revealed conservation of most, but not all, cytoplasmic tyrosine residues across several species. Our site-directed mutagenesis experiments revealed that the single tyrosine residue in human TSLPR was not required for TSLP-dependent cell proliferation. It has previously been reported that Y449 of human IL-7Rα is required for IL-7 dependent proliferation. Interestingly, in contrast to IL-7 signaling, none of tyrosine residues in the human IL-7Rα cytoplasmic domain were required for TSLP-dependent cell proliferation in the presence of a wild type TSLPR. However, the mutation of all cytoplasmic four tyrosine residues of human IL-7Rα and human TSLPR to phenylalanine residues abolished the proliferative ability of the TSLP receptor complex in response to TSLP.</p> <p>Conclusion</p> <p>These results suggest that TSLP requires at least one cytoplasmic tyrosine residue to transmit proliferative signals. Unlike other members of IL-2 cytokine family, tyrosine residues in IL-7Rα and TSLPR cytoplasmic domains play a redundant role in TSLP-mediated cell growth.</p

    Observation of a ppb mass threshoud enhancement in \psi^\prime\to\pi^+\pi^-J/\psi(J/\psi\to\gamma p\bar{p}) decay

    Full text link
    The decay channel ψπ+πJ/ψ(J/ψγppˉ)\psi^\prime\to\pi^+\pi^-J/\psi(J/\psi\to\gamma p\bar{p}) is studied using a sample of 1.06×1081.06\times 10^8 ψ\psi^\prime events collected by the BESIII experiment at BEPCII. A strong enhancement at threshold is observed in the ppˉp\bar{p} invariant mass spectrum. The enhancement can be fit with an SS-wave Breit-Wigner resonance function with a resulting peak mass of M=186113+6(stat)26+7(syst)MeV/c2M=1861^{+6}_{-13} {\rm (stat)}^{+7}_{-26} {\rm (syst)} {\rm MeV/}c^2 and a narrow width that is Γ<38MeV/c2\Gamma<38 {\rm MeV/}c^2 at the 90% confidence level. These results are consistent with published BESII results. These mass and width values do not match with those of any known meson resonance.Comment: 5 pages, 3 figures, submitted to Chinese Physics

    A Gene's Ability to Buffer Variation Is Predicted by Its Fitness Contribution and Genetic Interactions

    Get PDF
    BACKGROUND: Many single-gene knockouts result in increased phenotypic (e.g., morphological) variability among the mutant's offspring. This has been interpreted as an intrinsic ability of genes to buffer genetic and environmental variation. A phenotypic capacitor is a gene that appears to mask phenotypic variation: when knocked out, the offspring shows more variability than the wild type. Theory predicts that this phenotypic potential should be correlated with a gene's knockout fitness and its number of negative genetic interactions. Based on experimentally measured phenotypic capacity, it was suggested that knockout fitness was unimportant, but that phenotypic capacitors tend to be hubs in genetic and physical interaction networks. METHODOLOGY/PRINCIPAL FINDINGS: We re-analyse the available experimental data in a combined model, which includes knockout fitness and network parameters as well as expression level and protein length as predictors of phenotypic potential. Contrary to previous conclusions, we find that the strongest predictor is in fact haploid knockout fitness (responsible for 9% of the variation in phenotypic potential), with an additional contribution from the genetic interaction network (5%); once these two factors are taken into account, protein-protein interactions do not make any additional contribution to the variation in phenotypic potential. CONCLUSIONS/SIGNIFICANCE: We conclude that phenotypic potential is not a mysterious "emergent" property of cellular networks. Instead, it is very simply determined by the overall fitness reduction of the organism (which in its compromised state can no longer compensate for multiple factors that contribute to phenotypic variation), and by the number (and presumably nature) of genetic interactions of the knocked-out gene. In this light, Hsp90, the prototypical phenotypic capacitor, may not be representative: typical phenotypic capacitors are not direct "buffers" of variation, but are simply genes encoding central cellular functions

    Solvothermal Synthesis and Characterization of Chalcopyrite CuInSe2 Nanoparticles

    Get PDF
    The ternary I-III-VI2 semiconductor of CuInSe2 nanoparticles with controllable size was synthesized via a simple solvothermal method by the reaction of elemental selenium powder and CuCl as well as InCl3 directly in the presence of anhydrous ethylenediamine as solvent. X-ray diffraction patterns and scanning electron microscopy characterization confirmed that CuInSe2 nanoparticles with high purity were obtained at different temperatures by varying solvothermal time, and the optimal temperature for preparing CuInSe2 nanoparticles was found to be between 180 and 220 °C. Indium selenide was detected as the intermediate state at the initial stage during the formation of pure ternary compound, and the formation of copper-related binary phase was completely deterred in that the more stable complex [Cu(C2H8N2)2]+ was produced by the strong N-chelation of ethylenediamine with Cu+. These CuInSe2 nanoparticles possess a band gap of 1.05 eV calculated from UV–vis spectrum, and maybe can be applicable to the solar cell devices
    corecore