157 research outputs found

    Electronic structure of superconducting graphite intercalate compounds: The role of the interlayer state

    Full text link
    Although not an intrinsic superconductor, it has been long--known that, when intercalated with certain dopants, graphite is capable of exhibiting superconductivity. Of the family of graphite--based materials which are known to superconduct, perhaps the most well--studied are the alkali metal--graphite intercalation compounds (GIC) and, of these, the most easily fabricated is the C8{}_8K system which exhibits a transition temperature Tc≃0.14\bm{T_c\simeq 0.14} K. By increasing the alkali metal concentration (through high pressure fabrication techniques), the transition temperature has been shown to increase to as much as 5\bm 5 K in C2{}_2Na. Lately, in an important recent development, Weller \emph{et al.} have shown that, at ambient conditions, the intercalated compounds \cyb and \cca exhibit superconductivity with transition temperatures Tc≃6.5\bm{T_c\simeq 6.5} K and 11.5\bm{11.5} K respectively, in excess of that presently reported for other graphite--based compounds. We explore the architecture of the states near the Fermi level and identify characteristics of the electronic band structure generic to GICs. As expected, we find that charge transfer from the intercalant atoms to the graphene sheets results in the occupation of the Ο€\bm\pi--bands. Yet, remarkably, in all those -- and only those -- compounds that superconduct, we find that an interlayer state, which is well separated from the carbon sheets, also becomes occupied. We show that the energy of the interlayer band is controlled by a combination of its occupancy and the separation between the carbon layers.Comment: 4 Figures. Please see accompanying experimental manuscript "Superconductivity in the Intercalated Graphite Compounds C6Yb and C6Ca" by Weller et a

    Polymorphisms in the Mn-SOD and EC-SOD Genes and Their Relationship to Diabetic Neuropathy in Type 1 Diabetes Mellitus

    Get PDF
    BACKGROUND: Oxidative stress, resulting in a marked increase in the level of oxygen free radicals (OFR), has been implicated in the etiology of diabetic neuropathy (DN). Antioxidant enzymes may protect against the rapid onset and progression of DN, by reducing the excess of OFR and peroxide. Mutations and polymorphisms in the genes encoding such enzymes may therefore result in predisposition to DN. We investigated the role of genes encoding two antioxidant enzymes, mitochondrial (Mn-SOD) and extracellular (EC-SOD) superoxide dismutase, in DN pathogenesis in a Russian population. We studied Ala(-9)Val and Ile58Thr polymorphisms of the Mn-SOD gene and Arg213Gly dimorphism of the EC-SOD gene in type 1 diabetic patients with (n = 82) and without DN (n = 84). RESULTS: We developed and used a new polymerase chain reaction (PCR) assays for rapid detection of polymorphisms. These assays involved the use of mismatch PCR primers to create restriction sites in the amplified product only in presence of the polymorphic base. The PCR product was than digested with BshTI, Eco32I or Eco52I to detect Ala(-9)Val, Ile58Thr or Arg213Gly polymorphic site respectively. The frequencies of the Ala allele (50.6% vs. 68.5%, p < 0.002) and the Ala/Ala genotype (17.1% vs. 39.3%, p < 0.005) of the Mn-SOD gene were significantly lower in DN patients than in diabetic subjects without DN. In contrast, the Val allele (49.4% vs. 31.5%, p < 0.002) and the Val/Val genotype (15.9% vs. 2.4%, p < 0.01) were significantly more frequent in the DN patients than in the control group. CONCLUSIONS: Ala(-9)Val substitution in the Mn-SOD gene was associated with DN in a Russian populatio

    Spider mite web mediates anti-predator behaviour

    Get PDF
    Herbivores suffer significant mortality from predation and are therefore subject to natural selection on traits promoting predator avoidance and resistance. They can employ an array of strategies to reduce predation, for example through changes in behaviour, morphology and life history. So far, the anti-predator response studied most intensively in spider mites has been the avoidance of patches with high predation risk. Less attention has been given to the dense web produced by spider mites, which is a complex structure of silken threads that is thought to hinder predators. Here, we investigate the effects of the web produced by the red spider mite, Tetranychus evansi Baker & Pritchard, on its interactions with the predatory mite, Phytoseiulus longipes Evans. We tested whether female spider mites recognize predator cues and whether these can induce the spider mites to produce denser web. We found that the prey did not produce denser web in response to such cues, but laid more eggs suspended in the web, away from the leaf surface. These suspended eggs suffered less from predation by P. longipes than eggs that were laid on the leaf surface under the web. Thus, by altering their oviposition behaviour in response to predator cues, females of T. evansi protect their offspring

    Expression profiling of laser-microdissected intrapulmonary arteries in hypoxia-induced pulmonary hypertension

    Get PDF
    BACKGROUND: Chronic hypoxia influences gene expression in the lung resulting in pulmonary hypertension and vascular remodelling. For specific investigation of the vascular compartment, laser-microdissection of intrapulmonary arteries was combined with array profiling. METHODS AND RESULTS: Analysis was performed on mice subjected to 1, 7 and 21 days of hypoxia (FiO(2 )= 0.1) using nylon filters (1176 spots). Changes in the expression of 29, 38, and 42 genes were observed at day 1, 7, and 21, respectively. Genes were grouped into 5 different classes based on their time course of response. Gene regulation obtained by array analysis was confirmed by real-time PCR. Additionally, the expression of the growth mediators PDGF-B, TGF-Ξ², TSP-1, SRF, FGF-2, TIE-2 receptor, and VEGF-R1 were determined by real-time PCR. At day 1, transcription modulators and ion-related proteins were predominantly regulated. However, at day 7 and 21 differential expression of matrix producing and degrading genes was observed, indicating ongoing structural alterations. Among the 21 genes upregulated at day 1, 15 genes were identified carrying potential hypoxia response elements (HREs) for hypoxia-induced transcription factors. Three differentially expressed genes (S100A4, CD36 and FKBP1a) were examined by immunohistochemistry confirming the regulation on protein level. While FKBP1a was restricted to the vessel adventitia, S100A4 and CD36 were localised in the vascular tunica media. CONCLUSION: Laser-microdissection and array profiling has revealed several new genes involved in lung vascular remodelling in response to hypoxia. Immunohistochemistry confirmed regulation of three proteins and specified their localisation in vascular smooth muscle cells and fibroblasts indicating involvement of different cells types in the remodelling process. The approach allows deeper insight into hypoxic regulatory pathways specifically in the vascular compartment of this complex organ

    Kinetochore-Independent Chromosome Poleward Movement during Anaphase of Meiosis II in Mouse Eggs

    Get PDF
    Kinetochores are considered to be the key structures that physically connect spindle microtubules to the chromosomes and play an important role in chromosome segregation during mitosis. Due to different mechanisms of spindle assembly between centrosome-containing mitotic cells and acentrosomal meiotic oocytes, it is unclear how a meiotic spindle generates the poleward forces to drive two rounds of meiotic chromosome segregation to achieve genome haploidization. We took advantage of the fact that DNA beads are able to induce bipolar spindle formation without kinetochores and studied the behavior of DNA beads in the induced spindle in mouse eggs during meiosis II. Interestingly, DNA beads underwent poleward movements that were similar in timing and speed to the meiotic chromosomes, although all the beads moved together to the same spindle pole. Disruption of dynein function abolished the poleward movements of DNA beads but not of the meiotic chromosomes, suggesting the existence of different dynein-dependent and dynein-independent force generation mechanisms for the chromosome poleward movement, and the latter may be dependent on the presence of kinetochores. Consistent with the observed DNA bead poleward movement, sperm haploid chromatin (which also induced bipolar spindle formation after injection to a metaphase egg without forming detectable kinetochore structures) also underwent similar poleward movement at anaphase as DNA beads. The results suggest that in the chromatin-induced meiotic spindles, kinetochore attachments to spindle microtubules are not absolutely required for chromatin poleward movements at anaphase

    Dual Anti-OX40/IL-2 Therapy Augments Tumor Immunotherapy via IL-2R-Mediated Regulation of OX40 Expression

    Get PDF
    The provision of T cell co-stimulation via members of the TNFR super-family, including OX40 (CD134) and 4-1BB (CD137), provides critical signals that promote T cell survival and differentiation. Recent studies have demonstrated that ligation of OX40 can augment T cell-mediated anti-tumor immunity in pre-clinical models and more importantly, OX40 agonists are under clinical development for cancer immunotherapy. OX40 is of particular interest as a therapeutic target as it is not expressed on naΓ―ve T cells but rather, is transiently up-regulated following TCR stimulation. Although TCR engagement is necessary for inducing OX40 expression, the downstream signals that regulate OX40 itself remain unclear. In this study, we demonstrate that OX40 expression is regulated through a TCR and common gamma chain cytokine-dependent signaling cascade that requires JAK3-mediated activation of the downstream transcription factors STAT3 and STAT5. Furthermore, combined treatment with an agonist anti-OX40 mAb and IL-2 augmented tumor immunotherapy against multiple tumor types. Dual therapy was also able to restore the function of anergic tumor-reactive CD8 T cells in mice with long-term well-established (>5 wks) tumors, leading to increased survival of the tumor-bearing hosts. Together, these data reveal the ability of TCR/common gamma chain cytokine signaling to regulate OX40 expression and demonstrate a novel means of augmenting cancer immunotherapy by providing dual anti-OX40/common gamma chain cytokine-directed therapy

    The Zinc Transporter SLC39A14/ZIP14 Controls G-Protein Coupled Receptor-Mediated Signaling Required for Systemic Growth

    Get PDF
    Aberrant zinc (Zn) homeostasis is associated with abnormal control of mammalian growth, although the molecular mechanisms of Zn's roles in regulating systemic growth remain to be clarified. Here we report that the cell membrane-localized Zn transporter SLC39A14 controls G-protein coupled receptor (GPCR)-mediated signaling. Mice lacking Slc39a14 (Slc39a14-KO mice) exhibit growth retardation and impaired gluconeogenesis, which are attributable to disrupted GPCR signaling in the growth plate, pituitary gland, and liver. The decreased signaling is a consequence of the reduced basal level of cyclic adenosine monophosphate (cAMP) caused by increased phosphodiesterase (PDE) activity in Slc39a14-KO cells. We conclude that SLC39A14 facilitates GPCR-mediated cAMP-CREB signaling by suppressing the basal PDE activity, and that this is one mechanism for Zn's involvement in systemic growth processes. Our data highlight SLC39A14 as an important novel player in GPCR-mediated signaling. In addition, the Slc39a14-KO mice may be useful for studying the GPCR-associated regulation of mammalian systemic growth

    Inflammatory cell-mediated tumour progression and minisatellite mutation correlate with the decrease of antioxidative enzymes in murine fibrosarcoma cells

    Get PDF
    We isolated six clones of weakly tumorigenic fibrosarcoma (QR) from the tumorigenic clone BMT-11 cl-9. The QR clones were unable to grow in normal C57BL/6 mice when injected s.c. (1 Γ— 105 cells). However, they formed aggressive tumours upon co-implantation with a β€˜foreign body’, i.e. a gelatin sponge, and the rate of tumour take ranged from 8% to 58% among QR clones. The enhanced tumorigenicity was due to host cell-mediated reaction to the gelatin sponge (inflammation). Immunoblot analysis and enzyme activity assay revealed a significant inverse correlation between the frequencies of tumour formation by QR clones and the levels of manganese superoxide dismutase (Mn-SOD, P<0.005) and glutathione peroxidase (GPΟ‡, P<0.01) in the respective tumour clones. Electron spin resonance (ESR) revealed that superoxide-scavenging ability of cell lysates of the QR clone with high level of Mn-SOD was significantly higher than that with low level of the antioxidative enzyme in the presence of potassium cyanide, an inhibitor for copper–zinc superoxide dismutase (CuZn-SOD) (P<0.001). Minisatellite mutation (MSM) induced by the inflammatory cells in tumour cells were investigated by DNA fingerprint analysis after QR clones had been co-cultured with gelatin-sponge-reactive cells. The MSM rate was significantly higher in the subclones with low levels of Mn-SOD and GPΟ‡ (P<0.05) than in the subclones with high levels of both enzymes. The MSM of the subclones with low levels of both enzymes was inhibited in the presence of mannitol, a hydroxyl radical scavenger. The content of 8-hydroxydeoxyguanosine (8-OHdG) by which the cellular DNA damage caused by active oxygen species can be assessed was significantly low in the tumours arising from the QR clone with high levels of Mn-SOD and GPΟ‡ even if the clone had been co-implanted with gelatin sponge, compared with the arising tumour from the QR clone with low levels of those antioxidative enzymes (P<0.001). In contrast, CuZn-SOD and catalase levels in the six QR clones did not have any correlation with tumour progression parameters. These results suggest that tumour progression is accelerated by inflammation-induced active oxygen species particularly accompanied with declined levels of intracellular antioxidative enzymes in tumour cells. Β© 1999 Cancer Research Campaig

    A Dialogue between the Hypoxia-Inducible Factor and the Tumor Microenvironment

    Get PDF
    The hypoxia-inducible factor is the key protein responsible for the cellular adaptation to low oxygen tension. This transcription factor becomes activated as a result of a drop in the partial pressure of oxygen, to hypoxic levels below 5% oxygen, and targets a panel of genes involved in maintenance of oxygen homeostasis. Hypoxia is a common characteristic of the microenvironment of solid tumors and, through activation of the hypoxia-inducible factor, is at the center of the growth dynamics of tumor cells. Not only does the microenvironment impact on the hypoxia-inducible factor but this factor impacts on microenvironmental features, such as pH, nutrient availability, metabolism and the extracellular matrix. In this review we discuss the influence the tumor environment has on the hypoxia-inducible factor and outline the role of this factor as a modulator of the microenvironment and as a powerful actor in tumor remodeling. From a fundamental research point of view the hypoxia-inducible factor is at the center of a signaling pathway that must be deciphered to fully understand the dynamics of the tumor microenvironment. From a translational and pharmacological research point of view the hypoxia-inducible factor and its induced downstream gene products may provide information on patient prognosis and offer promising targets that open perspectives for novel β€œanti-microenvironment” directed therapies
    • …
    corecore