9 research outputs found

    The p53 Tumor Suppressor-Like Protein nvp63 Mediates Selective Germ Cell Death in the Sea Anemone Nematostella vectensis

    Get PDF
    Here we report the identification and molecular function of the p53 tumor suppressor-like protein nvp63 in a non-bilaterian animal, the starlet sea anemone Nematostella vectensis. So far, p53-like proteins had been found in bilaterians only. The evolutionary origin of p53-like proteins is highly disputed and primordial p53-like proteins are variably thought to protect somatic cells from genotoxic stress. Here we show that ultraviolet (UV) irradiation at low levels selectively induces programmed cell death in early gametes but not somatic cells of adult N. vectensis polyps. We demonstrate with RNA interference that nvp63 mediates this cell death in vivo. Nvp63 is the most archaic member of three p53-like proteins found in N. vectensis and in congruence with all known p53-like proteins, nvp63 binds to the vertebrate p53 DNA recognition sequence and activates target gene transcription in vitro. A transactivation inhibitory domain at its C-terminus with high homology to the vertebrate p63 may regulate nvp63 on a molecular level. The genotoxic stress induced and nvp63 mediated apoptosis in N. vectensis gametes reveals an evolutionary ancient germ cell protective pathway which relies on p63-like proteins and is conserved from cnidarians to vertebrates

    p63 protects the female germ line during meiotic arrest.

    No full text
    Meiosis in the female germ line of mammals is distinguished by a prolonged arrest in prophase of meiosis I between homologous chromosome recombination and ovulation. How DNA damage is detected in these arrested oocytes is poorly understood, but it is variably thought to involve p53, a central tumour suppressor in mammals. While the function of p53 in monitoring the genome of somatic cells is clear, a consensus for the importance of p53 for germ line integrity has yet to emerge. Here we show that the p53 homologue p63 (refs 5, 6), and specifically the TAp63 isoform, is constitutively expressed in female germ cells during meiotic arrest and is essential in a process of DNA damage-induced oocyte death not involving p53. We also show that DNA damage induces both the phosphorylation of p63 and its binding to p53 cognate DNA sites and that these events are linked to oocyte death. Our data support a model whereby p63 is the primordial member of the p53 family and acts in a conserved process of monitoring the integrity of the female germ line, whereas the functions of p53 are restricted to vertebrate somatic cells for tumour suppression. These findings have implications for understanding female germ line fidelity, the regulation of fertility and the evolution of tumour suppressor mechanisms

    The Method of Configuration Interaction

    No full text
    corecore