576 research outputs found
Effect of non-vacuum thermal annealing on high indium content InGaN films deposited by pulsed laser deposition
InGaN films with 33% and 60% indium contents were deposited by pulsed laser deposition (PLD) at a low growth temperature of 300 °C. The films were then annealed at 500-800 °C in the non-vacuum furnace for 15 min with an addition of N(2) atmosphere. X-ray diffraction results indicate that the indium contents in these two films were raised to 41% and 63%, respectively, after annealing in furnace. In(2)O(3) phase was formed on InGaN surface during the annealing process, which can be clearly observed by the measurements of auger electron spectroscopy, transmission electron microscopy and x-ray photoelectron spectroscopy. Due to the obstruction of indium out-diffusion by forming In(2)O(3) on surface, it leads to the efficient increment in indium content of InGaN layer. In addition, the surface roughness was greatly improved by removing In(2)O(3) with the etching treatment in HCl solution. Micro-photoluminescence measurement was performed to analyze the emission property of InGaN layer. For the as-grown InGaN with 33% indium content, the emission wavelength was gradually shifted from 552 to 618 nm with increasing the annealing temperature to 800 °C. It reveals the InGaN films have high potential in optoelectronic applications
Non-Gaussian states for continuous variable quantum computation via Gaussian maps
We investigate non-Gaussian states of light as ancillary inputs for
generating nonlinear transformations required for quantum computing with
continuous variables. We consider a recent proposal for preparing a cubic phase
state, find the exact form of the prepared state and perform a detailed
comparison to the ideal cubic phase state. We thereby identify the main
challenges to preparing an ideal cubic phase state and describe the gates
implemented with the non-ideal prepared state. We also find the general form of
operations that can be implemented with ancilla Fock states, together with
Gaussian input states, linear optics and squeezing transformations, and
homodyne detection with feed forward, and discuss the feasibility of continuous
variable quantum computing using ancilla Fock states.Comment: 8 pages, 6 figure
The Higgs boson in the MSSM in light of the LHC
We investigate the expectations for the light Higgs signal in the MSSM in
different search channels at the LHC. After taking into account dark matter and
flavor constraints in the MSSM with eleven free parameters, we show that the
light Higgs signal in the channel is expected to be at most at
the level of the SM Higgs, while the from W fusion
and/or the can be enhanced. For the main discovery
mode, we show that a strong suppression of the signal occurs in two different
cases: low or large invisible width. A more modest suppression is
associated with the effect of light supersymmetric particles. Looking for such
modification of the Higgs properties and searching for supersymmetric partners
and pseudoscalar Higgs offer two complementary probes of supersymmetry.Comment: 19 pages, 8 figure
General framework for estimating the ultimate precision limit in noisy quantum-enhanced metrology
The estimation of parameters characterizing dynamical processes is central to
science and technology. The estimation error changes with the number N of
resources employed in the experiment (which could quantify, for instance, the
number of probes or the probing energy). Typically, it scales as 1/N^(1/2).
Quantum strategies may improve the precision, for noiseless processes, by an
extra factor 1/N^(1/2). For noisy processes, it is not known in general if and
when this improvement can be achieved. Here we propose a general framework for
obtaining attainable and useful lower bounds for the ultimate limit of
precision in noisy systems. We apply this bound to lossy optical interferometry
and atomic spectroscopy in the presence of dephasing, showing that it captures
the main features of the transition from the 1/N to the 1/N^(1/2) behaviour as
N increases, independently of the initial state of the probes, and even with
use of adaptive feedback.Comment: Published in Nature Physics. This is the revised submitted version.
The supplementary material can be found at
http://www.nature.com/nphys/journal/v7/n5/extref/nphys1958-s1.pd
Quantum interferometry with three-dimensional geometry
Quantum interferometry uses quantum resources to improve phase estimation
with respect to classical methods. Here we propose and theoretically
investigate a new quantum interferometric scheme based on three-dimensional
waveguide devices. These can be implemented by femtosecond laser waveguide
writing, recently adopted for quantum applications. In particular, multiarm
interferometers include "tritter" and "quarter" as basic elements,
corresponding to the generalization of a beam splitter to a 3- and 4-port
splitter, respectively. By injecting Fock states in the input ports of such
interferometers, fringe patterns characterized by nonclassical visibilities are
expected. This enables outperforming the quantum Fisher information obtained
with classical fields in phase estimation. We also discuss the possibility of
achieving the simultaneous estimation of more than one optical phase. This
approach is expected to open new perspectives to quantum enhanced sensing and
metrology performed in integrated photonic.Comment: 7 pages (+4 Supplementary Information), 5 figure
Noiseless Linear Amplification and Distillation of Entanglement
The idea of signal amplification is ubiquitous in the control of physical
systems, and the ultimate performance limit of amplifiers is set by quantum
physics. Increasing the amplitude of an unknown quantum optical field, or more
generally any harmonic oscillator state, must introduce noise. This linear
amplification noise prevents the perfect copying of the quantum state, enforces
quantum limits on communications and metrology, and is the physical mechanism
that prevents the increase of entanglement via local operations. It is known
that non-deterministic versions of ideal cloning and local entanglement
increase (distillation) are allowed, suggesting the possibility of
non-deterministic noiseless linear amplification. Here we introduce, and
experimentally demonstrate, such a noiseless linear amplifier for
continuous-variables states of the optical field, and use it to demonstrate
entanglement distillation of field-mode entanglement. This simple but powerful
circuit can form the basis of practical devices for enhancing quantum
technologies. The idea of noiseless amplification unifies approaches to cloning
and distillation, and will find applications in quantum metrology and
communications.Comment: Submitted 10 June 200
Quantum-Dense Metrology
Quantum metrology utilizes entanglement for improving the sensitivity of
measurements. Up to now the focus has been on the measurement of just one out
of two non-commuting observables. Here we demonstrate a laser interferometer
that provides information about two non-commuting observables, with
uncertainties below that of the meter's quantum ground state. Our experiment is
a proof-of-principle of quantum dense metrology, and uses the additional
information to distinguish between the actual phase signal and a parasitic
signal due to scattered and frequency shifted photons. Our approach can be
readily applied to improve squeezed-light enhanced gravitational-wave detectors
at non-quantum noise limited detection frequencies in terms of a sub shot-noise
veto-channel.Comment: 5 pages, 3 figures; includes supplementary material
Lead-Free Polycrystalline Ferroelectric Nanowires with Enhanced Curie Temperature
Ferroelectrics are important technological materials with wide-ranging applications in electronics, communication, health, and energy. While lead-based ferroelectrics have remained the predominant mainstay of industry for decades, environmentally friendly lead-free alternatives are limited due to relatively low Curie temperatures (T C) and/or high cost in many cases. Efforts have been made to enhance T C through strain engineering, often involving energy-intensive and expensive fabrication of thin epitaxial films on lattice-mismatched substrates. Here, a relatively simple and scalable sol-gel synthesis route to fabricate polycrystalline (Ba0.85Ca0.15)(Zr0.1Ti0.9)O3 nanowires within porous templates is presented, with an observed enhancement of T C up to ≈300 °C as compared to ≈90 °C in the bulk. By combining experiments and theoretical calculations, this effect is attributed to the volume reduction in the template-grown nanowires that modifies the balance between different structural instabilities. The results offer a cost-effective solution-based approach for strain-tuning in a promising lead-free ferroelectric system, thus widening their current applicability
Dimethyl Sulfoxide (DMSO) Exacerbates Cisplatin-induced Sensory Hair Cell Death in Zebrafish (Danio rerio)
Inner ear sensory hair cells die following exposure to aminoglycoside antibiotics or chemotherapeutics like cisplatin, leading to permanent auditory and/or balance deficits in humans. Zebrafish (Danio rerio) are used to study drug-induced sensory hair cell death since their hair cells are similar in structure and function to those found in humans. We developed a cisplatin dose-response curve using a transgenic line of zebrafish that expresses membrane-targeted green fluorescent protein under the control of the Brn3c promoter/enhancer. Recently, several small molecule screens have been conducted using zebrafish to identify potential pharmacological agents that could be used to protect sensory hair cells in the presence of ototoxic drugs. Dimethyl sulfoxide (DMSO) is typically used as a solvent for many pharmacological agents in sensory hair cell cytotoxicity assays. Serendipitously, we found that DMSO potentiated the effects of cisplatin and killed more sensory hair cells than treatment with cisplatin alone. Yet, DMSO alone did not kill hair cells. We did not observe the synergistic effects of DMSO with the ototoxic aminoglycoside antibiotic neomycin. Cisplatin treatment with other commonly used organic solvents (i.e. ethanol, methanol, and polyethylene glycol 400) also did not result in increased cell death compared to cisplatin treatment alone. Thus, caution should be exercised when interpreting data generated from small molecule screens since many compounds are dissolved in DMSO.National Institutes of Health (U.S.) (DC010998)National Institutes of Health (U.S.) (NIH DC010231)Harvard College (1780- )Sarah Fuller Foundation for Little Deaf Childre
Metadevice for intensity modulation with sub-wavelength spatial resolution
Effectively continuous control over propagation of a beam of light requires light modulation with pixelation that is smaller than the optical wavelength. Here we propose a spatial intensity modulator with sub-wavelength resolution in one dimension. The metadevice combines recent advances in reconfigurable nanomembrane metamaterials and coherent all-optical control of metasurfaces. It uses nanomechanical actuation of metasurface absorber strips placed near a mirror in order to control their interaction with light from perfect absorption to negligible loss, promising a path towards dynamic beam diffraction, light focusing and holography without unwanted diffraction artefacts
- …