576 research outputs found

    Effect of non-vacuum thermal annealing on high indium content InGaN films deposited by pulsed laser deposition

    Get PDF
    InGaN films with 33% and 60% indium contents were deposited by pulsed laser deposition (PLD) at a low growth temperature of 300 °C. The films were then annealed at 500-800 °C in the non-vacuum furnace for 15 min with an addition of N(2) atmosphere. X-ray diffraction results indicate that the indium contents in these two films were raised to 41% and 63%, respectively, after annealing in furnace. In(2)O(3) phase was formed on InGaN surface during the annealing process, which can be clearly observed by the measurements of auger electron spectroscopy, transmission electron microscopy and x-ray photoelectron spectroscopy. Due to the obstruction of indium out-diffusion by forming In(2)O(3) on surface, it leads to the efficient increment in indium content of InGaN layer. In addition, the surface roughness was greatly improved by removing In(2)O(3) with the etching treatment in HCl solution. Micro-photoluminescence measurement was performed to analyze the emission property of InGaN layer. For the as-grown InGaN with 33% indium content, the emission wavelength was gradually shifted from 552 to 618 nm with increasing the annealing temperature to 800 °C. It reveals the InGaN films have high potential in optoelectronic applications

    Non-Gaussian states for continuous variable quantum computation via Gaussian maps

    Get PDF
    We investigate non-Gaussian states of light as ancillary inputs for generating nonlinear transformations required for quantum computing with continuous variables. We consider a recent proposal for preparing a cubic phase state, find the exact form of the prepared state and perform a detailed comparison to the ideal cubic phase state. We thereby identify the main challenges to preparing an ideal cubic phase state and describe the gates implemented with the non-ideal prepared state. We also find the general form of operations that can be implemented with ancilla Fock states, together with Gaussian input states, linear optics and squeezing transformations, and homodyne detection with feed forward, and discuss the feasibility of continuous variable quantum computing using ancilla Fock states.Comment: 8 pages, 6 figure

    The Higgs boson in the MSSM in light of the LHC

    Get PDF
    We investigate the expectations for the light Higgs signal in the MSSM in different search channels at the LHC. After taking into account dark matter and flavor constraints in the MSSM with eleven free parameters, we show that the light Higgs signal in the gammaγgamma\gamma channel is expected to be at most at the level of the SM Higgs, while the hbbˉh\rightarrow b\bar{b} from W fusion and/or the hττˉh \rightarrow\tau\bar\tau can be enhanced. For the main discovery mode, we show that a strong suppression of the signal occurs in two different cases: low MAM_A or large invisible width. A more modest suppression is associated with the effect of light supersymmetric particles. Looking for such modification of the Higgs properties and searching for supersymmetric partners and pseudoscalar Higgs offer two complementary probes of supersymmetry.Comment: 19 pages, 8 figure

    General framework for estimating the ultimate precision limit in noisy quantum-enhanced metrology

    Full text link
    The estimation of parameters characterizing dynamical processes is central to science and technology. The estimation error changes with the number N of resources employed in the experiment (which could quantify, for instance, the number of probes or the probing energy). Typically, it scales as 1/N^(1/2). Quantum strategies may improve the precision, for noiseless processes, by an extra factor 1/N^(1/2). For noisy processes, it is not known in general if and when this improvement can be achieved. Here we propose a general framework for obtaining attainable and useful lower bounds for the ultimate limit of precision in noisy systems. We apply this bound to lossy optical interferometry and atomic spectroscopy in the presence of dephasing, showing that it captures the main features of the transition from the 1/N to the 1/N^(1/2) behaviour as N increases, independently of the initial state of the probes, and even with use of adaptive feedback.Comment: Published in Nature Physics. This is the revised submitted version. The supplementary material can be found at http://www.nature.com/nphys/journal/v7/n5/extref/nphys1958-s1.pd

    Quantum interferometry with three-dimensional geometry

    Get PDF
    Quantum interferometry uses quantum resources to improve phase estimation with respect to classical methods. Here we propose and theoretically investigate a new quantum interferometric scheme based on three-dimensional waveguide devices. These can be implemented by femtosecond laser waveguide writing, recently adopted for quantum applications. In particular, multiarm interferometers include "tritter" and "quarter" as basic elements, corresponding to the generalization of a beam splitter to a 3- and 4-port splitter, respectively. By injecting Fock states in the input ports of such interferometers, fringe patterns characterized by nonclassical visibilities are expected. This enables outperforming the quantum Fisher information obtained with classical fields in phase estimation. We also discuss the possibility of achieving the simultaneous estimation of more than one optical phase. This approach is expected to open new perspectives to quantum enhanced sensing and metrology performed in integrated photonic.Comment: 7 pages (+4 Supplementary Information), 5 figure

    Noiseless Linear Amplification and Distillation of Entanglement

    Full text link
    The idea of signal amplification is ubiquitous in the control of physical systems, and the ultimate performance limit of amplifiers is set by quantum physics. Increasing the amplitude of an unknown quantum optical field, or more generally any harmonic oscillator state, must introduce noise. This linear amplification noise prevents the perfect copying of the quantum state, enforces quantum limits on communications and metrology, and is the physical mechanism that prevents the increase of entanglement via local operations. It is known that non-deterministic versions of ideal cloning and local entanglement increase (distillation) are allowed, suggesting the possibility of non-deterministic noiseless linear amplification. Here we introduce, and experimentally demonstrate, such a noiseless linear amplifier for continuous-variables states of the optical field, and use it to demonstrate entanglement distillation of field-mode entanglement. This simple but powerful circuit can form the basis of practical devices for enhancing quantum technologies. The idea of noiseless amplification unifies approaches to cloning and distillation, and will find applications in quantum metrology and communications.Comment: Submitted 10 June 200

    Quantum-Dense Metrology

    Full text link
    Quantum metrology utilizes entanglement for improving the sensitivity of measurements. Up to now the focus has been on the measurement of just one out of two non-commuting observables. Here we demonstrate a laser interferometer that provides information about two non-commuting observables, with uncertainties below that of the meter's quantum ground state. Our experiment is a proof-of-principle of quantum dense metrology, and uses the additional information to distinguish between the actual phase signal and a parasitic signal due to scattered and frequency shifted photons. Our approach can be readily applied to improve squeezed-light enhanced gravitational-wave detectors at non-quantum noise limited detection frequencies in terms of a sub shot-noise veto-channel.Comment: 5 pages, 3 figures; includes supplementary material

    Lead-Free Polycrystalline Ferroelectric Nanowires with Enhanced Curie Temperature

    Get PDF
    Ferroelectrics are important technological materials with wide-ranging applications in electronics, communication, health, and energy. While lead-based ferroelectrics have remained the predominant mainstay of industry for decades, environmentally friendly lead-free alternatives are limited due to relatively low Curie temperatures (T C) and/or high cost in many cases. Efforts have been made to enhance T C through strain engineering, often involving energy-intensive and expensive fabrication of thin epitaxial films on lattice-mismatched substrates. Here, a relatively simple and scalable sol-gel synthesis route to fabricate polycrystalline (Ba0.85Ca0.15)(Zr0.1Ti0.9)O3 nanowires within porous templates is presented, with an observed enhancement of T C up to ≈300 °C as compared to ≈90 °C in the bulk. By combining experiments and theoretical calculations, this effect is attributed to the volume reduction in the template-grown nanowires that modifies the balance between different structural instabilities. The results offer a cost-effective solution-based approach for strain-tuning in a promising lead-free ferroelectric system, thus widening their current applicability

    Dimethyl Sulfoxide (DMSO) Exacerbates Cisplatin-induced Sensory Hair Cell Death in Zebrafish (Danio rerio)

    Get PDF
    Inner ear sensory hair cells die following exposure to aminoglycoside antibiotics or chemotherapeutics like cisplatin, leading to permanent auditory and/or balance deficits in humans. Zebrafish (Danio rerio) are used to study drug-induced sensory hair cell death since their hair cells are similar in structure and function to those found in humans. We developed a cisplatin dose-response curve using a transgenic line of zebrafish that expresses membrane-targeted green fluorescent protein under the control of the Brn3c promoter/enhancer. Recently, several small molecule screens have been conducted using zebrafish to identify potential pharmacological agents that could be used to protect sensory hair cells in the presence of ototoxic drugs. Dimethyl sulfoxide (DMSO) is typically used as a solvent for many pharmacological agents in sensory hair cell cytotoxicity assays. Serendipitously, we found that DMSO potentiated the effects of cisplatin and killed more sensory hair cells than treatment with cisplatin alone. Yet, DMSO alone did not kill hair cells. We did not observe the synergistic effects of DMSO with the ototoxic aminoglycoside antibiotic neomycin. Cisplatin treatment with other commonly used organic solvents (i.e. ethanol, methanol, and polyethylene glycol 400) also did not result in increased cell death compared to cisplatin treatment alone. Thus, caution should be exercised when interpreting data generated from small molecule screens since many compounds are dissolved in DMSO.National Institutes of Health (U.S.) (DC010998)National Institutes of Health (U.S.) (NIH DC010231)Harvard College (1780- )Sarah Fuller Foundation for Little Deaf Childre

    Metadevice for intensity modulation with sub-wavelength spatial resolution

    No full text
    Effectively continuous control over propagation of a beam of light requires light modulation with pixelation that is smaller than the optical wavelength. Here we propose a spatial intensity modulator with sub-wavelength resolution in one dimension. The metadevice combines recent advances in reconfigurable nanomembrane metamaterials and coherent all-optical control of metasurfaces. It uses nanomechanical actuation of metasurface absorber strips placed near a mirror in order to control their interaction with light from perfect absorption to negligible loss, promising a path towards dynamic beam diffraction, light focusing and holography without unwanted diffraction artefacts
    corecore