7 research outputs found

    Laser-induced modification of the patellar ligament tissue: comparative study of structural and optical changes

    Get PDF
    The effects of non-ablative infrared (IR) laser treatment of collagenous tissue have been commonly interpreted in terms of collagen denaturation spread over the laser-heated tissue area. In this work, the existing model is refined to account for the recently reported laser-treated tissue heterogeneity and complex collagen degradation pattern using comprehensive optical imaging and calorimetry toolkits. Patella ligament (PL) provided a simple model of type I collagen tissue containing its full structural content from triple-helix molecules to gross architecture. PL ex vivo was subjected to IR laser treatments (laser spot, 1.6 mm) of equal dose, where the tissue temperature reached the collagen denaturation temperature of 60 ± 2°C at the laser spot epicenterin the first regime, and was limited to 67 ± 2°C in the second regime. The collagen network was analyzed versus distance from the epicenter. Experimental characterization of the collagenous tissue at all structural levels included cross-polarization optical coherence tomography, nonlinear optical microscopy, light microscopy/histology, and differential scanning calorimetry. Regressive rearrangement of the PL collagen network was found to spread well outside the laser spot epicenter (>2 mm) and was accompanied by multilevel hierarchical reorganization of collagen. Four zones of distinct optical and morphological properties were identified, all elliptical in shape, and elongated in the direction perpendicular to the PL long axis. Although the collagen transformation into a random-coil molecular structure was occasionally observed, it was mechanical integrity of the supramolecular structures that was primarily compromised. We found that the structural rearrangement of the collagen network related primarily to the heat-induced thermo-mechanical effects rather than molecular unfolding. The current body of evidence supports the notion that the supramolecular collagen structure suffered degradation of various degrees, which gave rise to the observed zonal character of the laser-treated lesion

    A Model of Brain Circulation and Metabolism: NIRS Signal Changes during Physiological Challenges

    Get PDF
    We construct a model of brain circulation and energy metabolism. The model is designed to explain experimental data and predict the response of the circulation and metabolism to a variety of stimuli, in particular, changes in arterial blood pressure, CO2 levels, O2 levels, and functional activation. Significant model outputs are predictions about blood flow, metabolic rate, and quantities measurable noninvasively using near-infrared spectroscopy (NIRS), including cerebral blood volume and oxygenation and the redox state of the CuA centre in cytochrome c oxidase. These quantities are now frequently measured in clinical settings; however the relationship between the measurements and the underlying physiological events is in general complex. We anticipate that the model will play an important role in helping to understand the NIRS signals, in particular, the cytochrome signal, which has been hard to interpret. A range of model simulations are presented, and model outputs are compared to published data obtained from both in vivo and in vitro settings. The comparisons are encouraging, showing that the model is able to reproduce observed behaviour in response to various stimuli

    Increased cerebral blood flow in the right frontal lobe area during sleep precedes self-awakening in humans

    No full text
    <p>Abstract</p> <p>Background</p> <p>Some people can subconsciously wake up naturally (self-awakening) at a desired/planned time without external time stimuli. However, the underlying mechanism regulating this ability remains to be elucidated. This study sought to examine the relationship between hemodynamic changes in oxyhemoglobin (oxy-Hb) level in the prefrontal cortex and sleep structures during sleep in subjects instructed to self-awaken.</p> <p>Results</p> <p>Fifteen healthy right-handed male volunteers with regular sleep habits participated in a consecutive two-night crossover study. The subjects were instructed to wake up at a specified time (“request” condition) or instructed to sleep until the morning but forced to wake up at 03:00 without prior notice (“surprise” condition). Those who awoke within ± 30 min of the planned waking time were defined as those who succeeded in self-awakening (“success” group). Seven subjects succeeded in self-awakening and eight failed.</p> <p>No significant differences were observed in the amounts of sleep in each stage between conditions or between groups. On the “request” night, an increase in oxy-Hb level in the right prefrontal cortex and a decrease in δ power were observed in the “success” group around 30 min before self-awakening, whereas no such changes were observed in the “failure” group. On the “surprise” night, no significant changes were observed in oxy-Hb level or δ power in either group.</p> <p>Conclusions</p> <p>These findings demonstrate a correlation between self-awakening and a pre-awakening increase in hemodynamic activation in the right prefrontal cortex, suggesting the structure’s contribution to time estimation ability.</p
    corecore