48 research outputs found

    Body Shaping and Volume Restoration: The Role of Hyaluronic Acid

    Get PDF
    Driven by the rising popularity of minimally invasive techniques, the demand for cosmetic procedures is increasing. Cosmetic body-shaping procedures can be categorized into those that remove tissue and those that add volume. This review focuses on the latter of these categories, particularly on the use of resorbable hyaluronic acid gels specifically developed for minimally invasive volume enhancement. Pilot studies of hyaluronic acid involving its injection to contour various body deformities and its recent use in female breast augmentation are discussed. Injectable hyaluronic acid is effective and well tolerated. It represents an attractive treatment option for volume restoration or augmentation by providing predictable long-lasting results after minimally invasive administration. Alternative treatment options for volume enhancement also are summarized including fat transfer, silicone implants, and the use of injectable nonresorbable products such as silicone, polyalkylimide, and polyacrylamide gels. As patients continue to opt for nonsurgical procedures that offer predictable results, the development of minimally invasive products such as hyaluronic acid is increasingly important

    Tanshinones Inhibit the Growth of Breast Cancer Cells through Epigenetic Modification of Aurora A Expression and Function

    Get PDF
    The objectives of this study were to evaluate the effects of tanshinones from a Chinese herb Salvia Miltiorrhiza on the growth of breast cancer cells, and to elucidate cellular and molecular mechanisms of action. Tanshinones showed the dose-dependent effect on the growth inhibition of breast cancer cells in vitro, with tanshinone I (T1) the most potent agent. T1 was also the only tanshinone to have potent activity in inhibiting the growth of the triple-negative breast cancer cell line MDA-MB231. T1 caused cell cycle arrests of both estrogen-dependent and estrogen-independent cell lines associated with alterations of cyclinD, CDK4 and cyclinB, and induced breast cancer cell apoptosis associated with upregulation of c-PARP and downregulation of survivin and Aurora A. Among these associated biomarkers, Aurora A showed the most consistent pattern with the anti-growth activity of tanshinones. Overexpression of Aurora A was also verified in breast tumors. The gene function assay showed that knockdown of Aurora A by siRNA dramatically reduced the growth-inhibition and apoptosis-induction activities of T1, suggesting Aurora A as an important functional target of T1 action. On the other hand, tanshinones had much less adverse effects on normal mammary epithelial cells. Epigenetic mechanism studies showed that overexpression of Aurora A gene in breast cancer cells was not regulated by gene promoter DNA methylation, but by histone acetylation. T1 treatment significantly reduced acetylation levels of histone H3 associated with Aurora A gene. Our results supported the potent activity of T1 in inhibiting the growth of breast cancer cells in vitro in part by downregulation of Aurora A gene function. Our previous studies also demonstrated that T1 had potent anti-angiogenesis activity and minimal side effects in vivo. Altogether, this study warrants further investigation to develop T1 as an effective and safe agent for the therapy and prevention of breast cancer

    Surgically Sculpting Athletic Physiques

    No full text

    Anesthesia for In-Office Oculoplastic Surgery: How We Do It

    No full text
    corecore