8 research outputs found

    X-ray structure of a decameric cyclophilin-cyclosporin crystal complex

    No full text
    Human cyclophilin A (CypA), a ubiquitous intracellular protein of 165 amino acids, is the major receptor for the cyclic undecapeptide immunosuppressant drug cyclosporin A (CsA), which prevents allograft rejection after transplant surgery and is efficacious in the field of autoimmune diseases. CsA prevents T-cell proliferation by blocking the calcium-activated pathway leading to interleukin-2 transcription. Besides their ability to bind CsA, the cyclophilin isoforms also have peptidyl-prolyl isomerase activity and enhance the rate of protein folding. The macrolide FK506 acts similarly to CsA and its cognate receptor FKBP also has peptidyl-prolyl isomerase activity. Inhibition of this enzymatic activity alone is not sufficient to achieve immunosuppression. A direct molecular interaction between the drug-immunophilin complex (CsA-CypA, or FK506-FKBP) and the phosphatase calcineurin, is responsible for modulating the T-cell receptor signal transduction pathway. Here we describe the crystal structure of a decameric CypA-CsA complex. The crystallographic asymmetric unit is composed of a pentamer of 1:1 cyclophilin-cyclosporin complexes of rather exact non-crystallographic fivefold symmetry. The 2.8 A electron density map is of high quality. The five independent cyclosporin molecules are clearly identifiable, providing an unambiguous picture of the detailed interactions between a peptide drug and its receptor. It broadly confirms the results of previous NMR, X-ray and modelling studies, but provides further important structural details which will be of use in the design of drugs that are analogues of CsA

    Role of Mitochondria in Generation of Phenotypic Heterogeneity in Yeast

    No full text
    corecore