6 research outputs found

    Fault reactivation in the central Indian Ocean and the rheology of oceanic lithosphere

    Full text link
    The intraplate deformation in the central Indian Ocean basin is a well-known example of a deviation from an axiom of plate tectonics: that of rigid plates with deformation concentrated at plate boundaries. Here we present multichannel seismic reflection profiles which show that high-angle reverse faults in the sediments of the central Indian Ocean extend through the crust and possibly into the uppermost mantle. The dip of these faults, which we believe result from the reactivation of pre-existing faults formed at the spreading centre, is ˜40° in the basement, which is consistent with the distribution and focal mechanisms of earthquakes on faults now forming at spreading centres. This style of deformation, coupled with the observation of large earthquakes in the mantle lithosphere, indicates that brittle failure of the oceanic lithosphere may nucleate in the vicinity of the brittle/ductile transition and propagate through the crust

    Retreat of the East Antarctic Ice Sheet during the Last Glacial Termination

    No full text
    The retreat of the East Antarctic ice sheet at the end of the last glacial period has been attributed to both sea-level rise and warming of the ocean at the margin of the ice sheet, but it has been challenging to test these hypotheses. Given the lack of constraints on the timing of retreat, it has been difficult to evaluate whether the East Antarctic ice sheet contributed to meltwater pulse 1a, an abrupt sea-level rise of approximately 20 m that occurred about 14,700 years ago. Here we use terrestrial exposure ages and marine sedimentological analyses to show that ice retreat in Mac. Robertson Land, East Antarctica, initiated about 14,000 years ago, became widespread about 12,000 years ago, and was completed by about 7,000 years ago. We use two models of different complexities to assess the forcing of the retreat. Our simulations suggest that, although the initial stage of retreat may have been forced by sea-level rise, the majority of the ice loss resulted from ocean warming at the onset of the Holocene epoch. In light of our age model we conclude that the East Antarctic ice sheet is unlikely to have been the source of meltwater pulse 1a, and, on the basis of our simulations, suggest that Antarctic ice sheets made an insignificant contribution to eustatic sea-level rise at this time
    corecore