18 research outputs found

    General RNA-binding proteins have a function in poly(A)-binding protein-dependent translation

    No full text
    The interaction between the poly(A)-binding protein (PABP) and eukaryotic translational initiation factor 4G (eIF4G), which brings about circularization of the mRNA, stimulates translation. General RNA-binding proteins affect translation, but their role in mRNA circularization has not been studied before. Here, we demonstrate that the major mRNA ribonucleoprotein YB-1 has a pivotal function in the regulation of eIF4F activity by PABP. In cell extracts, the addition of YB-1 exacerbated the inhibition of 80S ribosome initiation complex formation by PABP depletion. Rabbit reticulocyte lysate in which PABP weakly stimulates translation is rendered PABP-dependent after the addition of YB-1. In this system, eIF4E binding to the cap structure is inhibited by YB-1 and stimulated by a nonspecific RNA. Significantly, adding PABP back to the depleted lysate stimulated eIF4E binding to the cap structure more potently if this binding had been downregulated by YB-1. Conversely, adding nonspecific RNA abrogated PABP stimulation of eIF4E binding. These data strongly suggest that competition between YB-1 and eIF4G for mRNA binding is required for efficient stimulation of eIF4F activity by PABP

    Trio, a Rho Family GEF, Interacts with the Presynaptic Active Zone Proteins Piccolo and Bassoon.

    Get PDF
    Synaptic vesicles (SVs) fuse with the plasma membrane at a precise location called the presynaptic active zone (AZ). This fusion is coordinated by proteins embedded within a cytoskeletal matrix assembled at the AZ (CAZ). In the present study, we have identified a novel binding partner for the CAZ proteins Piccolo and Bassoon. This interacting protein, Trio, is a member of the Dbl family of guanine nucleotide exchange factors (GEFs) known to regulate the dynamic assembly of actin and growth factor dependent axon guidance and synaptic growth. Trio was found to interact with the C-terminal PBH 9/10 domains of Piccolo and Bassoon via its own N-terminal Spectrin repeats, a domain that is also critical for its localization to the CAZ. Moreover, our data suggest that regions within the C-terminus of Trio negatively regulate its interactions with Piccolo/Bassoon. These findings provide a mechanism for the presynaptic targeting of Trio and support a model in which Piccolo and Bassoon play a role in regulating neurotransmission through interactions with proteins, including Trio, that modulate the dynamic assembly of F-actin during cycles of synaptic vesicle exo- and endocytosis
    corecore