23 research outputs found

    Isolation of Radial Glia-Like Neural Stem Cells from Fetal and Adult Mouse Forebrain via Selective Adhesion to a Novel Adhesive Peptide-Conjugate

    Get PDF
    Preferential adhesion of neural stem cells to surfaces covered with a novel synthetic adhesive polypeptide (AK-cyclo[RGDfC]) provided a unique, rapid procedure for isolating radial glia-like cells from both fetal and adult rodent brain. Radial glia-like (RGl) neural stem/progenitor cells grew readily on the peptide-covered surfaces under serum-free culture conditions in the presence of EGF as the only growth factor supplement. Proliferating cells derived either from fetal (E 14.5) forebrain or from different regions of the adult brain maintained several radial glia-specific features including nestin, RC2 immunoreactivity and Pax6, Sox2, Blbp, Glast gene expression. Proliferating RGl cells were obtained also from non-neurogenic zones including the parenchyma of the adult cerebral cortex and dorsal midbrain. Continuous proliferation allowed isolating one-cell derived clones of radial glia-like cells. All clones generated neurons, astrocytes and oligodendrocytes under appropriate inducing conditions. Electrophysiological characterization indicated that passive conductance with large delayed rectifying potassium current might be a uniform feature of non-induced radial glia-like cells. Upon induction, all clones gave rise to GABAergic neurons. Significant differences were found, however, among the clones in the generation of glutamatergic and cathecolamine-synthesizing neurons and in the production of oligodendrocytes

    Childhood cancer in the offspring born in 1921–1984 to US radiologic technologists

    Get PDF
    We examined the risk of childhood cancer (<20 years) among 105 950 offspring born in 1921–1984 to US radiologic technologist (USRT) cohort members. Parental occupational in utero and preconception ionising radiation (IR) testis or ovary doses were estimated from work history data, badge dose data, and literature doses (the latter doses before 1960). Female and male RTs reported a total of 111 and 34 haematopoietic malignancies and 115 and 34 solid tumours, respectively, in their offspring. Hazard ratios (HRs) and 95% confidence intervals (CIs) were calculated using Cox proportional hazards regression. Leukaemia (n=63) and solid tumours (n=115) in offspring were not associated with maternal in utero or preconception radiation exposure. Risks for lymphoma (n=44) in those with estimated doses of <0.2, 0.2–1.0, and >1.0 mGy vs no exposure were non-significantly elevated with HRs of 2.3, 1.8, and 2.7. Paternal preconception exposure to estimated cumulative doses above the 95th percentile (⩾82 mGy, n=6 cases) was associated with a non-significant risk of childhood cancer of 1.8 (95% CI 0.7–4.6). In conclusion, we found no convincing evidence of an increased risk of childhood cancer in the offspring of RTs in association with parental occupational radiation exposure

    Targeting Huntington’s disease through histone deacetylases

    Get PDF
    Huntington’s disease (HD) is a debilitating neurodegenerative condition with significant burdens on both patient and healthcare costs. Despite extensive research, treatment options for patients with this condition remain limited. Aberrant post-translational modification (PTM) of proteins is emerging as an important element in the pathogenesis of HD. These PTMs include acetylation, phosphorylation, methylation, sumoylation and ubiquitination. Several families of proteins are involved with the regulation of these PTMs. In this review, I discuss the current evidence linking aberrant PTMs and/or aberrant regulation of the cellular machinery regulating these PTMs to HD pathogenesis. Finally, I discuss the evidence suggesting that pharmacologically targeting one of these protein families the histone deacetylases may be of potential therapeutic benefit in the treatment of HD

    Identifying variation in resistance to the take-all fungus, Gaeumannomyces graminis var. tritici, between different ancestral and modern wheat species

    Get PDF
    Background: Ancestral wheat relatives are important sources of genetic diversity for the introduction of novel traits for the improvement of modern bread wheat. In this study the aim was to assess the susceptibility of 34 accessions of the diploid wheat Triticum monococcum (A genome) to Gaeumannomyces graminis var. tritici (Ggt), the causal agent of take-all disease. The second aim was to explore the susceptibility of tetraploid wheat (T. durum) and the B genome progenitor species Aegilops speltoides to Ggt. Results: Field trials, conducted over 5 years, identified seven T. monococcum accessions with a good level of resistance to take-all when exposed to natural inoculum under UK field conditions. All other accessions were highly susceptible or did not exhibit a consistent phenotype across years. DArT marker genotyping revealed that whole genome diversity was not closely related to resistance to take-all within T. monococcum, suggesting that multiple genetic sources of resistance may exist within the species. In contrast the tetraploid wheat cultivars and Ae. speltoides were all highly susceptible to the disease, including those with known elevated levels of benzoxazinoids. Conclusions: The diploid wheat species T. monococcum may provide a genetic source of resistance to take-all disease that could be utilised to improve the performance of T. aestivum in high disease risk situations. This represents an extremely valuable resource to achieve economic and sustainable genetic control of this root disease

    Influence of black nightshade (Solanum nigrum) and hairy nightshade (Solanum physalifolium) phenology on processed pea contamination

    No full text
    Fruit of black (Solanum nigrum) nightshade and hairy nightshade (S. physalifolium var. nitidibaccatum) contaminate processed peas. The phenology of flower bud appearance (FBA) and flowering in both species was quantified using thermal time (base temperature (Tb), 6 °C) across five sowing dates, to inform management strategies. There was no photoperiod requirement for flowering in either species, hairy nightshade developed earlier (FBA, 352 °Cd; flowering, 509 °Cd) than black nightshade (FBA, 434 °Cd; flowering, 633 °Cd) but had a slower fruit growth rate than black nightshade. Hairy nightshade fruits reached the pea contamination threshold (3 mm diameter) prior to those of black nightshade. A comparison of processed pea cultivar maturity and sowing date showed that cultivars with a short thermal time to maturity (< 730 °Cd, Tb 4.5°C) would have a reduced risk of contamination by black nightshade but not by hairy nightshade.The Foundation for Research Science and Technology Education Fellowship programme and the New Zealand Plant Protection Society provided financial assistance
    corecore