52 research outputs found

    Triggered seismicity associated with the 1990 Nicoya, Costa Rica, M-w=7.0 earthquake

    Get PDF
    The 25 March 1990 (M-w = 7.0) subduction megathrust earthquake that occurred offshore the Nicoya Peninsula, Costa Rica, produced a large number of aftershocks on the subduction plate interface as expected and preceded an unusual sequence of earthquakes 75 km inland that had two periods of significant increase, one at 60-90 days and one near 270 days, following the main shock. This inland sequence of events would not typically fall within the classification of aftershocks given their spatial and temporal distance, and we show here that this sequence was likely triggered by the 25 March main shock. We compute stress changes on representative faults within this inland region using both a simple half-space model as well as with a 2-D finite element model that incorporates variable rheologic properties. The half-space model predicts a minor increase in Coulomb stress changes and a large amount of unclamping in this region, likely enough to cause triggering on the inland right-lateral strike-slip faults. Models that include a viscoelastic response also indicate stress increases that may link to triggering, particularly related to the time delay. Earthquakes on the subduction zone thrust along Costa Rica should be considered in hazard assessments for the inland populated region as several sets of strike-slip faults have been mapped in the fore-arc region

    The Enterovirus 71 A-particle Forms a Gateway to Allow Genome Release: A CryoEM Study of Picornavirus Uncoating

    Get PDF
    Since its discovery in 1969, enterovirus 71 (EV71) has emerged as a serious worldwide health threat. This human pathogen of the picornavirus family causes hand, foot, and mouth disease, and also has the capacity to invade the central nervous system to cause severe disease and death. Upon binding to a host receptor on the cell surface, the virus begins a two-step uncoating process, first forming an expanded, altered "A-particle", which is primed for genome release. In a second step after endocytosis, an unknown trigger leads to RNA expulsion, generating an intact, empty capsid. Cryo-electron microscopy reconstructions of these two capsid states provide insight into the mechanics of genome release. The EV71 A-particle capsid interacts with the genome near the icosahedral two-fold axis of symmetry, which opens to the external environment via a channel ~10 Å in diameter that is lined with patches of negatively charged residues. After the EV71 genome has been released, the two-fold channel shrinks, though the overall capsid dimensions are conserved. These structural characteristics identify the two-fold channel as the site where a gateway forms and regulates the process of genome release. © 2013 Shingler et al

    Breaking the slab

    No full text
    • 

    corecore