53 research outputs found

    Fenofibrate Reduces Mortality and Precludes Neurological Deficits in Survivors in Murine Model of Japanese Encephalitis Viral Infection

    Get PDF
    Background: Japanese encephalitis (JE), the most common form of viral encephalitis occurs periodically in endemic areas leading to high mortality and neurological deficits in survivors. It is caused by a flavivirus, Japanese encephalitis virus (JEV), which is transmitted to humans through mosquitoes. No effective cure exists for reducing mortality and morbidity caused by JEV infection, which is primarily due to excessive inflammatory response. Fenofibrate, a peroxisome proliferator-activated receptor-a (PPARa) agonist is known to resolve inflammation by repressing nuclear factor-kB (NF-kB) and enhancing transcription of anti-oxidant and anti-inflammatory genes. In addition, fenofibrate also up-regulates a class of proteins, cytochrome P4504Fs (Cyp4fs), which are involved in detoxification of the potent pro-inflammatory eicosanoid, leukotriene B4 (LTB4) to 20-hydroxy LTB4. Methodology/Principal Findings: The neuroprotective effect of fenofibrate was examined using in vitro (BV-2 microglial cell line) and in vivo (BALB/c mice) models of JEV infection. Mice were treated with fenofibrate for 2 or 4 days prior to JEV exposure. Pretreatment with fenofibrate for 4 but not 2 days reduced mortality by 80 % and brain LTB4 levels decreased concomitantly with the induction of Cyp4f15 and 4f18, which catalyze detoxification of LTB4 through hydroxylation. Expression of cytokines and chemokine decreased significantly as did microglial activation and replication of the JEV virus. Conclusions/Significance: Fenofibrate confers neuroprotection against Japanese encephalitis, in vivo, in mouse model o

    Identification of Intracellular and Plasma Membrane Calcium Channel Homologues in Pathogenic Parasites

    Get PDF
    Ca2+ channels regulate many crucial processes within cells and their abnormal activity can be damaging to cell survival, suggesting that they might represent attractive therapeutic targets in pathogenic organisms. Parasitic diseases such as malaria, leishmaniasis, trypanosomiasis and schistosomiasis are responsible for millions of deaths each year worldwide. The genomes of many pathogenic parasites have recently been sequenced, opening the way for rational design of targeted therapies. We analyzed genomes of pathogenic protozoan parasites as well as the genome of Schistosoma mansoni, and show the existence within them of genes encoding homologues of mammalian intracellular Ca2+ release channels: inositol 1,4,5-trisphosphate receptors (IP3Rs), ryanodine receptors (RyRs), two-pore Ca2+ channels (TPCs) and intracellular transient receptor potential (Trp) channels. The genomes of Trypanosoma, Leishmania and S. mansoni parasites encode IP3R/RyR and Trp channel homologues, and that of S. mansoni additionally encodes a TPC homologue. In contrast, apicomplexan parasites lack genes encoding IP3R/RyR homologues and possess only genes encoding TPC and Trp channel homologues (Toxoplasma gondii) or Trp channel homologues alone. The genomes of parasites also encode homologues of mammalian Ca2+ influx channels, including voltage-gated Ca2+ channels and plasma membrane Trp channels. The genome of S. mansoni also encodes Orai Ca2+ channel and STIM Ca2+ sensor homologues, suggesting that store-operated Ca2+ entry may occur in this parasite. Many anti-parasitic agents alter parasite Ca2+ homeostasis and some are known modulators of mammalian Ca2+ channels, suggesting that parasite Ca2+ channel homologues might be the targets of some current anti-parasitic drugs. Differences between human and parasite Ca2+ channels suggest that pathogen-specific targeting of these channels may be an attractive therapeutic prospect

    Molecular variability in Amerindians: widespread but uneven information

    Full text link

    Therapeutic Concentrations of Mitoxantrone Elicit Energetic Imbalance in H9c2 Cells as an Earlier Event

    Get PDF
    Mitoxantrone (MTX) is a chemotherapeutic agent that emerged as an alternative to anthracycline therapy. However, MTX also causes late cardiotoxicity, being oxidative stress and mitochondrial-impaired function proposed as possible mechanisms. This work aimed to investigate the relevance of these mechanisms to the MTX toxicity in H9c2 cells, using therapeutic concentrations. The observed cytotoxicity of MTX was time and concentration dependent in both lactate dehydrogenase leakage assay and MTT reduction assay. Two therapeutic concentrations (100 nM and 1 lM) and three time points were selected (24, 48, and 96 h) for further studies. Both MTX concentrations caused a significant increase in caspase-3 activity, which was not prevented by inhibiting MTX CYP450-metabolism. Significant decreases were observed in the total and reduced glutathione levels only in MTX 100 nM at 96 h; however, neither alterations in oxidized glutathione nor increases in the malondialdehyde levels were observed at any time or concentrations tested. On the other hand, changes in the intracellular ATP levels, mitochondrial membrane potential, and intracellular calcium levels were observed in both concentrations and all time tested. Noteworthy, decreased levels of ATP-synthase expression and activity and increases in the reactive species generation were observed at 96 h in both working concentrations. However, the radical scavenger N-acetylcysteine or the mitochondrial function enhancer L-carnitine did not prevent MTX cytotoxicity. Thus, this work evidenced the early MTX-induced energetic crisis as a possible key factor in the cell injury.This work received financial support from ‘‘Fundação para a CiĂȘncia e Tecnologia (FCT),’’ Portugal (EXPL/ DTP-FTO/0290/2012) and by ‘‘Fundo ComunitĂĄrio Europeu’’ (FEDER) under the frame of ‘‘Eixo I do Programa Operacional Fatores de Competitividade (POFC) do QREN’’ (COMPETE: FCOMP- 01-0124-FEDER-027749). The work was also supported by FCT within the framework of Strategic Projects for Scientific Research Units of R&D (project PEst-C/EQB/LA0006/2011). LGR and VVB thank FCT for their PhD Grant (SFRH/BD/63473/2009 and SFRH/ BD/82556/2011, respectively) and VMC thank FCT for her Post-doc Grant (SFRH/BPD/63746/2009)

    Female and male serins ( Serinus serinus ) respond differently to derived song traits

    Get PDF
    Abstract We tested if male or female behavior towards manipulated song indicates intra- or inter-sexual selection of two characteristics of serin song that are extreme and evolutionarily derived in this species: high frequency and fast syllable rate. In a first experiment, we monitored vocal responses and attendance to song playbacks. Female behavior indicated a preference for high-frequency song and suggested an aggressive function for fast syllable rates, as fast songs inhibited vocal response. Males did not show discrimination of frequency or syllable rate with this experimental design. The second experiment used a simple approach/no approach design, and in this experiment, males showed stronger discrimination between stimuli than did females. Therefore, sex differences in discrimination appear not to result from differences in perceptual abilities but from differences in the context of stimulus presentation. The second experiment also supported a role of song frequency in female choice, as the effect of frequency was limited to females: males did not respond differently to song frequency and approached high-frequency songs less than females did. Results of this experiment also supported an aggressive function for fast syllable rates, as the effect of fast songs did extend to male behavior. Taken together, our results indicate that the high frequency and fast syllable rate of serin song cannot result from a single selection process: while high frequency may have evolved by inter-sexual selection, syllable rate provokes a pattern of response that is more consistent with intra-sexual selection

    Synaptosome Bioenergetics and Calcium Handling: Aging Response

    No full text
    Synaptic function and the role of mitochondria inside nerve terminals can be studied by the isolation of an enriched fraction of synaptosomes, which consist in nerve ending particles that are formed during homogenization of brain tissue. Different procedures have been described for the isolation of an enriched fraction of synaptosomes, most of them based on the use of gradients. Neuronal function seems to be critically dependent on the energy provided by mitochondrial respiration. The determination of bioenergetic parameters such as mitochondrial membrane potential, respiratory rates, ATP content and mitochondrial Ca2+ uptake in synaptosomal preparations can provide useful information to analyze the contribution of mitochondrial function to the efficiency of neurotransmission.Synaptic nerve terminals are constantly exposed to extensive Ca2+ fluxes. At the presynaptic terminal, the recovery from calcium oscillations critically depends on the proper mitochondrial function to generate ATP and buffer Ca2+ transients together with an efficient endoplasmic reticulum function.The differential characteristics of synaptic and non-synaptic mitochondria in terms of bioenergetics and free radical production, as well as the response to aging are discussed.Fil: Lores Arnaiz, Silvia. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Houssay. Instituto de BioquĂ­mica y Medicina Molecular. Universidad de Buenos Aires. Facultad Medicina. Instituto de BioquĂ­mica y Medicina Molecular; ArgentinaFil: Rodriguez, Georgina Emma. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Houssay. Instituto de BiologĂ­a Celular y Neurociencia "Prof. Eduardo de Robertis". Universidad de Buenos Aires. Facultad de Medicina. Instituto de BiologĂ­a Celular y Neurociencia; ArgentinaFil: Karadayian, Analia Graciela. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Houssay. Instituto de BioquĂ­mica y Medicina Molecular. Universidad de Buenos Aires. Facultad Medicina. Instituto de BioquĂ­mica y Medicina Molecular; ArgentinaFil: Bustamante, Juanita. Universidad Abierta Interamericana; Argentin
    • 

    corecore