19 research outputs found

    Retuning of Inferior Colliculus Neurons Following Spiral Ganglion Lesions: A Single-Neuron Model of Converging Inputs

    Get PDF
    Lesions of spiral ganglion cells, representing a restricted sector of the auditory nerve array, produce immediate changes in the frequency tuning of inferior colliculus (IC) neurons. There is a loss of excitation at the lesion frequencies, yet responses to adjacent frequencies remain intact and new regions of activity appear. This leads to immediate changes in tuning and in tonotopic progression. Similar effects are seen after different methods of peripheral damage and in auditory neurons in other nuclei. The mechanisms that underlie these postlesion changes are unknown, but the acute effects seen in IC strongly suggest the β€œunmasking” of latent inputs by the removal of inhibition. In this study, we explore computational models of single neurons with a convergence of excitatory and inhibitory inputs from a range of characteristic frequencies (CFs), which can simulate the narrow prelesion tuning of IC neurons, and account for the changes in CF tuning after a lesion. The models can reproduce the data if inputs are aligned relative to one another in a precise order along the dendrites of model IC neurons. Frequency tuning in these neurons approximates that seen physiologically. Removal of inputs representing a narrow range of frequencies leads to unmasking of previously subthreshold excitatory inputs, which causes changes in CF. Conversely, if all of the inputs converge at the same point on the cell body, receptive fields are broad and unmasking rarely results in CF changes. However, if the inhibition is tonic with no stimulus-driven component, then unmasking can still produce changes in CF

    Homeobox Transcription Factors Are Required for Conidiation and Appressorium Development in the Rice Blast Fungus Magnaporthe oryzae

    Get PDF
    The appropriate development of conidia and appressoria is critical in the disease cycle of many fungal pathogens, including Magnaporthe oryzae. A total of eight genes (MoHOX1 to MoHOX8) encoding putative homeobox transcription factors (TFs) were identified from the M. oryzae genome. Knockout mutants for each MoHOX gene were obtained via homology-dependent gene replacement. Two mutants, Ξ”Mohox3 and Ξ”Mohox5, exhibited no difference to wild-type in growth, conidiation, conidium size, conidial germination, appressorium formation, and pathogenicity. However, the Ξ”Mohox1 showed a dramatic reduction in hyphal growth and increase in melanin pigmentation, compared to those in wild-type. Ξ”Mohox4 and Ξ”Mohox6 showed significantly reduced conidium size and hyphal growth, respectively. Ξ”Mohox8 formed normal appressoria, but failed in pathogenicity, probably due to defects in the development of penetration peg and invasive growth. It is most notable that asexual reproduction was completely abolished in Ξ”Mohox2, in which no conidia formed. Ξ”Mohox2 was still pathogenic through hypha-driven appressoria in a manner similar to that of the wild-type. However, Ξ”Mohox7 was unable to form appressoria either on conidial germ tubes, or at hyphal tips, being non-pathogenic. These factors indicate that M. oryzae is able to cause foliar disease via hyphal appressorium-mediated penetration, and MoHOX7 is mutually required to drive appressorium formation from hyphae and germ tubes. Transcriptional analyses suggest that the functioning of M. oryzae homeobox TFs is mediated through the regulation of gene expression and is affected by cAMP and Ca2+ signaling and/or MAPK pathways. The divergent roles of this gene set may help reveal how the genome and regulatory pathways evolved within the rice blast pathogen and close relatives
    corecore