4,885 research outputs found
Centrality dependence of the ratios and - a test of thermalization in Au+Au collisions at RHIC
We present the centrality dependence of the ratios and
measured in Au+Au collisions at GeV by the
STAR experiment at RHIC. The results are compared to measurements of other
identified particles and recombination model expectations in order to gain
insight into the partonic collectivity and possible thermalization of the
produced medium.Comment: 4 pages, 2 figures, Quark Matter 2006 conference proceeding
Modular and predictable assembly of porous organic molecular crystals
Nanoporous molecular frameworks are important in applications such as separation, storage and catalysis. Empirical rules exist for their assembly but it is still challenging to place and segregate functionality in three-dimensional porous solids in a predictable way. Indeed, recent studies of mixed crystalline frameworks suggest a preference for the statistical distribution of functionalities throughout the pores rather than, for example, the functional group localization found in the reactive sites of enzymes. This is a potential limitation for 'one-pot' chemical syntheses of porous frameworks from simple starting materials. An alternative strategy is to prepare porous solids from synthetically preorganized molecular pores. In principle, functional organic pore modules could be covalently prefabricated and then assembled to produce materials with specific properties. However, this vision of mix-and-match assembly is far from being realized, not least because of the challenge in reliably predicting three-dimensional structures for molecular crystals, which lack the strong directional bonding found in networks. Here we show that highly porous crystalline solids can be produced by mixing different organic cage modules that self-assemble by means of chiral recognition. The structures of the resulting materials can be predicted computationally, allowing in silico materials design strategies. The constituent pore modules are synthesized in high yields on gram scales in a one-step reaction. Assembly of the porous co-crystals is as simple as combining the modules in solution and removing the solvent. In some cases, the chiral recognition between modules can be exploited to produce porous organic nanoparticles. We show that the method is valid for four different cage modules and can in principle be generalized in a computationally predictable manner based on a lock-and-key assembly between modules
Acceleration of generalized hypergeometric functions through precise remainder asymptotics
We express the asymptotics of the remainders of the partial sums {s_n} of the
generalized hypergeometric function q+1_F_q through an inverse power series z^n
n^l \sum_k c_k/n^k, where the exponent l and the asymptotic coefficients {c_k}
may be recursively computed to any desired order from the hypergeometric
parameters and argument. From this we derive a new series acceleration
technique that can be applied to any such function, even with complex
parameters and at the branch point z=1. For moderate parameters (up to
approximately ten) a C implementation at fixed precision is very effective at
computing these functions; for larger parameters an implementation in higher
than machine precision would be needed. Even for larger parameters, however,
our C implementation is able to correctly determine whether or not it has
converged; and when it converges, its estimate of its error is accurate.Comment: 36 pages, 6 figures, LaTeX2e. Fixed sign error in Eq. (2.28), added
several references, added comparison to other methods, and added discussion
of recursion stabilit
Using a formative simulated patient exercise for curriculum evaluation
BACKGROUND: It is not clear that teaching specific history taking, physical examination and patient teaching techniques to medical students results in durable behavioural changes. We used a quasi-experimental design that approximated a randomized double blinded trial to examine whether a Participatory Decision-Making (PDM) educational module taught in a clerkship improves performance on a Simulated Patient Exercise (SPE) in another clerkship, and how this is influenced by the time between training and assessment. METHODS: Third year medical students in an internal medicine clerkship were assessed on their use of PDM skills in an SPE conducted in the second week of the clerkship. The rotational structure of the third year clerkships formed a pseudo-randomized design where students had 1) completed the family practice clerkship containing a training module on PDM skills approximately four weeks prior to the SPE, 2) completed the family medicine clerkship and the training module approximately 12 weeks prior to the SPE or 3) had not completed the family medicine clerkship and the PDM training module at the time they were assessed via the SPE. RESULTS: Based on limited pilot data there were statistically significant differences between students who received PDM training approximately four weeks prior to the SPE and students who received training approximately 12 weeks prior to the SPE. Students who received training 12 weeks prior to the SPE performed better than those who received training four weeks prior to the SPE. In a second comparison students who received training four weeks prior to the SPE performed better than those who did not receive training but the differences narrowly missed statistical significance (P < 0.05). CONCLUSION: This pilot study demonstrated the feasibility of a methodology for conducting rigorous curricular evaluations using natural experiments based on the structure of clinical rotations. In addition, it provided preliminary data suggesting targeted educational interventions can result in marked improvements in the clinical skills spontaneously exhibited by physician trainees in a setting different from which the skills were taught
Imaging cytoplasmic cAMP in mouse brainstem neurons
<p>Abstract</p> <p>Background</p> <p>cAMP is an ubiquitous second messenger mediating various neuronal functions, often as a consequence of increased intracellular Ca<sup>2+ </sup>levels. While imaging of calcium is commonly used in neuroscience applications, probing for cAMP levels has not yet been performed in living vertebrate neuronal tissue before.</p> <p>Results</p> <p>Using a strictly neuron-restricted promoter we virally transduced neurons in the organotypic brainstem slices which contained pre-Bötzinger complex, constituting the rhythm-generating part of the respiratory network. Fluorescent cAMP sensor Epac1-camps was expressed both in neuronal cell bodies and neurites, allowing us to measure intracellular distribution of cAMP, its absolute levels and time-dependent changes in response to physiological stimuli. We recorded [cAMP]<sub>i </sub>changes in the micromolar range after modulation of adenylate cyclase, inhibition of phosphodiesterase and activation of G-protein-coupled metabotropic receptors. [cAMP]<sub>i </sub>levels increased after membrane depolarisation and release of Ca<sup>2+ </sup>from internal stores. The effects developed slowly and reached their maximum after transient [Ca<sup>2+</sup>]<sub>i </sub>elevations subsided. Ca<sup>2+</sup>-dependent [cAMP]<sub>i </sub>transients were suppressed after blockade of adenylate cyclase with 0.1 mM adenylate cyclase inhibitor 2'5'-dideoxyadenosine and potentiated after inhibiting phosphodiesterase with isobutylmethylxanthine and rolipram. During paired stimulations, the second depolarisation and Ca<sup>2+ </sup>release evoked bigger cAMP responses. These effects were abolished after inhibition of protein kinase A with H-89 pointing to the important role of phosphorylation of calcium channels in the potentiation of [cAMP]<sub>i </sub>transients.</p> <p>Conclusion</p> <p>We constructed and characterized a neuron-specific cAMP probe based on Epac1-camps. Using viral gene transfer we showed its efficient expression in organotypic brainstem preparations. Strong fluorescence, resistance to photobleaching and possibility of direct estimation of [cAMP] levels using dual wavelength measurements make the probe useful in studies of neurons and the mechanisms of their plasticity. Epac1-camps was applied to examine the crosstalk between Ca<sup>2+ </sup>and cAMP signalling and revealed a synergism of actions of these two second messengers.</p
The outcome of arthroscopic treatment of temporomandibular joint arthoropathy
The document attached has been archived with permission from the Australian Dental Association. An external link to the publisher’s copy is included.Ninety patients underwent arthroscopic temporomandibular joint surgery to 124 joints for arthropathy which had failed to respond to at least six months of non-surgical treatment. They were surveyed at between 6 months and 5 years (mean 2.5 years) after surgery and 63 per cent responded to the survey. They reported an 82 per cent improvement for pain (50 to 100 per cent better), 80 per cent for clicking and 82 per cent for locking. There was no morbidity following the treatment. Arthroscopic surgery sould be considered for advanced temporomandibular joint arthropathy which is refractory to non-surgical treatment.I. Rosenburg and A. N. Gos
Widespread horizontal transfer of mitochondrial genes in flowering plants
Horizontal gene transfer - the exchange of genes across mating barriers - is recognized as a major force in bacterial evolution(1,2). However, in eukaryotes it is prevalent only in certain phagotrophic protists and limited largely to the ancient acquisition of bacterial genes(3-5). Although the human genome was initially reported(6) to contain over 100 genes acquired during vertebrate evolution from bacteria, this claim was immediately and repeatedly rebutted(7,8). Moreover, horizontal transfer is unknown within the evolution of animals, plants and fungi except in the special context of mobile genetic elements(9-12). Here we show, however, that standard mitochondrial genes, encoding ribosomal and respiratory proteins, are subject to evolutionarily frequent horizontal transfer between distantly related flowering plants. These transfers have created a variety of genomic outcomes, including gene duplication, recapture of genes lost through transfer to the nucleus, and chimaeric, half-monocot, half-dicot genes. These results imply the existence of mechanisms for the delivery of DNA between unrelated plants, indicate that horizontal transfer is also a force in plant nuclear genomes, and are discussed in the contexts of plant molecular phylogeny and genetically modified plants.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/62688/1/nature01743.pd
Choose your target.
Journal ArticleThe technology of modifying endogenous genes has recently been extended from mice to Drosophila and sheep. Concurrently, genomic sequencing is uncovering thousands of previously uncharacterized genes. Armed with today's technologies, what are our best options for delineating the functions of these new genes
- …